Suppr超能文献

磁共振成像(MRI)上胫骨斜率的精确高效测量:基于传统算法和深度学习算法的两种新型自主管道

Precise and efficient measurement of tibial slope on magnetic resonance imaging (MRI): two novel autonomous pipelines by traditional and deep learning algorithms.

作者信息

Qiu Shi, Wang Yaoting, Xing Gengyan, Pu Qiumei, Zhao Zhe, Zhao Lina

机构信息

Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.

Minzu University of China, Beijing, China.

出版信息

Quant Imaging Med Surg. 2024 Aug 1;14(8):5304-5320. doi: 10.21037/qims-23-1799. Epub 2024 Jul 12.

Abstract

BACKGROUND

The measurement of posterior tibial slopes (PTS) can aid in the screening and prevention of anterior cruciate ligament (ACL) injuries and improve the success rate of some other knee surgeries. However, the circle method for measuring PTS on magnetic resonance imaging (MRI) scans is challenging and time-consuming for most clinicians to implement in practice, despite being highly repeatable. Currently, there is no automated measurement scheme based on this method. To enhance measurement efficiency, consistency, and reduce errors resulting from manual measurements by physicians, this study proposes two novel, precise, and computationally efficient pipelines for autonomous measurement of PTS.

METHODS

The first pipeline employs traditional algorithms with experimental parameters to extract the tibial contour, detect adhesions, and then remove these adhesions from the extracted contour. A cyclic process is employed to adjust the parameters adaptively and generate a better binary image for the following tibial contour extraction step. The second pipeline utilizes deep learning models for classifying MRI slice images and segmenting tibial contours. The incorporation of deep learning models greatly simplifies the corresponding steps in pipeline 1.

RESULTS

To evaluate the practical performance of the proposed pipelines, doctors utilized MRI images from 20 patients. The success rates of pipeline 1 for central, medial, and lateral slices were 85%, 100%, and 90%, respectively, while pipeline 2 achieved success rates of 100%, 100%, and 95%. Compared to the 10 minutes required for manual measurement, our automated methods enable doctors to measure PTS within 10 seconds.

CONCLUSIONS

These evaluation results validate that the proposed pipelines are highly reliable and effective. Employing these tools can effectively prevent medical practitioners from being burdened by monotonous and repetitive manual measurement procedures, thereby enhancing both the precision and efficiency. Additionally, this tool holds the potential to contribute to the researches regarding the significance of PTS, particularly those demanding extensive and precise PTS measurement outcomes.

摘要

背景

胫骨后倾坡度(PTS)的测量有助于前交叉韧带(ACL)损伤的筛查与预防,并提高其他一些膝关节手术的成功率。然而,在磁共振成像(MRI)扫描上测量PTS的圆法对大多数临床医生来说在实践中实施具有挑战性且耗时,尽管其具有高度可重复性。目前,基于该方法尚无自动测量方案。为提高测量效率、一致性并减少医生手动测量产生的误差,本研究提出了两种新颖、精确且计算高效的PTS自主测量流程。

方法

第一个流程采用带有实验参数的传统算法来提取胫骨轮廓、检测粘连,然后从提取的轮廓中去除这些粘连。采用循环过程自适应调整参数,并为后续的胫骨轮廓提取步骤生成更好的二值图像。第二个流程利用深度学习模型对MRI切片图像进行分类并分割胫骨轮廓。深度学习模型的引入极大地简化了流程1中的相应步骤。

结果

为评估所提出流程的实际性能,医生使用了来自20名患者的MRI图像。流程1对中央、内侧和外侧切片的成功率分别为85%、100%和90%,而流程2的成功率分别为100%、100%和95%。与手动测量所需的10分钟相比,我们的自动化方法使医生能够在10秒内测量PTS。

结论

这些评估结果证实所提出的流程高度可靠且有效。使用这些工具可有效避免医生受单调重复的手动测量程序的困扰,从而提高精度和效率。此外,该工具有可能为有关PTS重要性的研究做出贡献,特别是那些需要大量精确PTS测量结果的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f0/11320518/4b10bcaa4738/qims-14-08-5304-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验