Suppr超能文献

人工智能辅助超声引导区域麻醉:一项探索性范围综述。

Artificial intelligence-assisted ultrasound-guided regional anaesthesia: An explorative scoping review.

作者信息

Marino Martina, Hagh Rebecca, Hamrin Senorski Eric, Longo Umile Giuseppe, Oeding Jacob F, Nellgard Bengt, Szell Anita, Samuelsson Kristian

机构信息

Fondazione Policlinico Universitario Campus Bio-Medico Via Alvaro del Portillo Roma Italy.

Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery Università Campus Bio-Medico di Roma, Via Alvaro del Portillo Roma Italy.

出版信息

J Exp Orthop. 2024 Aug 14;11(3):e12104. doi: 10.1002/jeo2.12104. eCollection 2024 Jul.

Abstract

PURPOSE

The present study reviews the available scientific literature on artificial intelligence (AI)-assisted ultrasound-guided regional anaesthesia (UGRA) and evaluates the reported intraprocedural parameters and postprocedural outcomes.

METHODS

A literature search was performed on 19 September 2023, using the Medline, EMBASE, CINAHL, Cochrane Library and Google Scholar databases by experts in electronic searching. All study designs were considered with no restrictions regarding patient characteristics or cohort size. Outcomes assessed included the accuracy of AI-model tracking, success at the first attempt, differences in outcomes between AI-assisted and unassisted UGRA, operator feedback and case-report data.

RESULTS

A joint adaptive median binary pattern (JAMBP) has been applied to improve the tracking procedure, while a particle filter (PF) is involved in feature extraction. JAMBP combined with PF was most accurate on all images for landmark identification, with accuracy scores of 0.83, 0.93 and 0.93 on original, preprocessed and filtered images, respectively. Evaluation of first-attempt success of spinal needle insertion revealed first-attempt success in most patients. When comparing AI application versus UGRA alone, a significant statistical difference ( < 0.05) was found for correct block view, correct structure identification and decrease in mean injection time, needle track adjustments and bone encounters in favour of having AI assistance. Assessment of operator feedback revealed that expert and nonexpert operator feedback was overall positive.

CONCLUSION

AI appears promising to enhance UGRA as well as to positively influence operator training. AI application of UGRA may improve the identification of anatomical structures and provide guidance for needle placement, reducing the risk of complications and improving patient outcomes.

LEVEL OF EVIDENCE

Level IV.

摘要

目的

本研究回顾了关于人工智能(AI)辅助超声引导区域麻醉(UGRA)的现有科学文献,并评估了所报道的术中参数和术后结果。

方法

2023年9月19日进行了文献检索,由电子检索专家使用Medline、EMBASE、CINAHL、Cochrane图书馆和谷歌学术数据库。所有研究设计均被纳入考虑,对患者特征或队列规模没有限制。评估的结果包括AI模型跟踪的准确性、首次尝试的成功率、AI辅助和非辅助UGRA之间的结果差异、操作者反馈以及病例报告数据。

结果

一种联合自适应中值二进制模式(JAMBP)已被应用于改进跟踪过程,同时粒子滤波器(PF)参与特征提取。JAMBP与PF相结合在所有图像上进行地标识别时最为准确,在原始图像、预处理图像和滤波图像上的准确率分别为0.83、0.93和0.93。对脊髓穿刺针插入首次尝试成功率的评估显示,大多数患者首次尝试成功。在比较AI应用与单纯UGRA时,在正确的阻滞视图、正确的结构识别以及平均注射时间、针道调整和骨接触减少方面发现了显著的统计学差异(<0.05),支持使用AI辅助。对操作者反馈的评估显示,专家和非专家操作者的反馈总体上是积极的。

结论

AI似乎有望增强UGRA并对操作者培训产生积极影响。UGRA的AI应用可能会改善解剖结构的识别,并为针的放置提供指导,降低并发症风险并改善患者预后。

证据水平

四级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc54/11322584/766a88fb00c8/JEO2-11-e12104-g002.jpg

相似文献

1
Artificial intelligence-assisted ultrasound-guided regional anaesthesia: An explorative scoping review.
J Exp Orthop. 2024 Aug 14;11(3):e12104. doi: 10.1002/jeo2.12104. eCollection 2024 Jul.
3
Artificial intelligence in ultrasound-guided regional anesthesia: A scoping review.
Front Med (Lausanne). 2022 Oct 25;9:994805. doi: 10.3389/fmed.2022.994805. eCollection 2022.
6
Artificial intelligence in regional anesthesia.
Curr Opin Anaesthesiol. 2025 Apr 21. doi: 10.1097/ACO.0000000000001505.
7
Evaluation of the impact of assistive artificial intelligence on ultrasound scanning for regional anaesthesia.
Br J Anaesth. 2023 Feb;130(2):226-233. doi: 10.1016/j.bja.2022.07.049. Epub 2022 Sep 8.
9
Exploring the utility of assistive artificial intelligence for ultrasound scanning in regional anesthesia.
Reg Anesth Pain Med. 2022 Jun;47(6):375-379. doi: 10.1136/rapm-2021-103368. Epub 2022 Jan 28.

引用本文的文献

1
Integrating artificial intelligence into orthopedics: Opportunities, challenges, and future directions.
J Hand Microsurg. 2025 Apr 22;17(4):100257. doi: 10.1016/j.jham.2025.100257. eCollection 2025 Jul.
2
Artificial intelligence applications in the management of musculoskeletal disorders of the shoulder: A systematic review.
J Exp Orthop. 2025 Apr 28;12(2):e70248. doi: 10.1002/jeo2.70248. eCollection 2025 Apr.

本文引用的文献

1
Ultrasound-guided regional anesthesia: present trends and future directions.
Braz J Anesthesiol. 2023 Nov-Dec;73(6):705-706. doi: 10.1016/j.bjane.2023.09.006. Epub 2023 Sep 30.
2
4
Utility of Artificial Intelligence for Real-Time Anatomical Landmark Identification in Ultrasound-Guided Thoracic Paravertebral Block.
J Digit Imaging. 2023 Oct;36(5):2051-2059. doi: 10.1007/s10278-023-00851-8. Epub 2023 Jun 8.
5
Artificial intelligence in ultrasound-guided regional anesthesia: A scoping review.
Front Med (Lausanne). 2022 Oct 25;9:994805. doi: 10.3389/fmed.2022.994805. eCollection 2022.
6
Evaluation of the impact of assistive artificial intelligence on ultrasound scanning for regional anaesthesia.
Br J Anaesth. 2023 Feb;130(2):226-233. doi: 10.1016/j.bja.2022.07.049. Epub 2022 Sep 8.
7
Assistive artificial intelligence for ultrasound image interpretation in regional anaesthesia: an external validation study.
Br J Anaesth. 2023 Feb;130(2):217-225. doi: 10.1016/j.bja.2022.06.031. Epub 2022 Aug 18.
8
A review on the anesthetic management of obese patients undergoing surgery.
BMC Anesthesiol. 2022 Apr 5;22(1):98. doi: 10.1186/s12871-022-01579-8.
9
Ultrasound-guided regional anesthesia: are we safe?
Minerva Anestesiol. 2022 Mar;88(3):110-111. doi: 10.23736/S0375-9393.22.16465-5.
10
Exploring the utility of assistive artificial intelligence for ultrasound scanning in regional anesthesia.
Reg Anesth Pain Med. 2022 Jun;47(6):375-379. doi: 10.1136/rapm-2021-103368. Epub 2022 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验