Suppr超能文献

人工智能在超声引导胸椎旁神经阻滞实时解剖标志识别中的应用。

Utility of Artificial Intelligence for Real-Time Anatomical Landmark Identification in Ultrasound-Guided Thoracic Paravertebral Block.

机构信息

Department of Anesthesiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China.

Department of Thoracic Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China.

出版信息

J Digit Imaging. 2023 Oct;36(5):2051-2059. doi: 10.1007/s10278-023-00851-8. Epub 2023 Jun 8.

Abstract

Thoracic paravertebral block (TPVB) is a common method of inducing perioperative analgesia in thoracic and abdominal surgery. Identifying anatomical structures in ultrasound images is very important especially for inexperienced anesthesiologists who are unfamiliar with the anatomy. Therefore, our aim was to develop an artificial neural network (ANN) to automatically identify (in real-time) anatomical structures in ultrasound images of TPVB. This study is a retrospective study using ultrasound scans (both video and standard still images) that we acquired. We marked the contours of the paravertebral space (PVS), lung, and bone in the TPVB ultrasound image. Based on the labeled ultrasound images, we used the U-net framework to train and create an ANN that enabled real-time identification of important anatomical structures in ultrasound images. A total of 742 ultrasound images were acquired and labeled in this study. In this ANN, the Intersection over Union (IoU) and Dice similarity coefficient (DSC or Dice coefficient) of the paravertebral space (PVS) were 0.75 and 0.86, respectively, the IoU and DSC of the lung were 0.85 and 0.92, respectively, and the IoU and DSC of the bone were 0.69 and 0.83, respectively. The accuracies of the PVS, lung, and bone were 91.7%, 95.4%, and 74.3%, respectively. For tenfold cross validation, the median interquartile range for PVS IoU and DSC was 0.773 and 0.87, respectively. There was no significant difference in the scores for the PVS, lung, and bone between the two anesthesiologists. We developed an ANN for the real-time automatic identification of thoracic paravertebral anatomy. The performance of the ANN was highly satisfactory. We conclude that AI has good prospects for use in TPVB. Clinical registration number: ChiCTR2200058470 (URL: http://www.chictr.org.cn/showproj.aspx?proj=152839 ; registration date: 2022-04-09).

摘要

胸椎旁神经阻滞(TPVB)是一种在胸腹部手术中诱导围手术期镇痛的常用方法。在超声图像中识别解剖结构非常重要,尤其是对于不熟悉解剖结构的经验不足的麻醉师。因此,我们的目标是开发一种人工神经网络(ANN),以实时自动识别 TPVB 超声图像中的解剖结构。本研究是一项回顾性研究,使用了我们获取的超声扫描(视频和标准静态图像)。我们标记了 TPVB 超声图像中的椎旁间隙(PVS)、肺和骨的轮廓。基于标记的超声图像,我们使用 U 形网络框架训练并创建了一个 ANN,能够实时识别超声图像中重要的解剖结构。本研究共采集并标记了 742 张超声图像。在这个 ANN 中,椎旁间隙(PVS)的交并比(IoU)和迪塞系数(DSC 或迪塞系数)分别为 0.75 和 0.86,肺的 IoU 和 DSC 分别为 0.85 和 0.92,骨的 IoU 和 DSC 分别为 0.69 和 0.83。PVS、肺和骨的准确率分别为 91.7%、95.4%和 74.3%。对于十折交叉验证,PVS IoU 和 DSC 的中位数四分位距分别为 0.773 和 0.87。两名麻醉师对 PVS、肺和骨的评分无显著差异。我们开发了一种用于实时自动识别胸椎旁解剖结构的 ANN。ANN 的性能非常令人满意。我们得出结论,人工智能在 TPVB 中具有广阔的应用前景。临床注册号:ChiCTR2200058470(网址:http://www.chictr.org.cn/showproj.aspx?proj=152839;注册日期:2022-04-09)。

相似文献

1
Utility of Artificial Intelligence for Real-Time Anatomical Landmark Identification in Ultrasound-Guided Thoracic Paravertebral Block.
J Digit Imaging. 2023 Oct;36(5):2051-2059. doi: 10.1007/s10278-023-00851-8. Epub 2023 Jun 8.
2
[Ultrasound guided catheterization of thoracic paravertebral space].
Anesteziol Reanimatol. 2014 Sep-Oct;59(5):57-8.
4
Different Approaches to Ultrasound-guided Thoracic Paravertebral Block: An Illustrated Review.
Anesthesiology. 2015 Aug;123(2):459-74. doi: 10.1097/ALN.0000000000000747.
7
[Our ultrasound-guided paravertebral block experiences in thoracic surgery].
Agri. 2015;27(3):139-42. doi: 10.5505/agri.2015.59885.
10
Are single-injection erector spinae plane block and multiple-injection costotransverse block equivalent to thoracic paravertebral block?
Acta Anaesthesiol Scand. 2019 Oct;63(9):1231-1238. doi: 10.1111/aas.13424. Epub 2019 Jul 23.

引用本文的文献

1
Artificial intelligence revolutionizing anesthesia management: advances and prospects in intelligent anesthesia technology.
Front Med (Lausanne). 2025 Aug 6;12:1571725. doi: 10.3389/fmed.2025.1571725. eCollection 2025.
2
Exploring the growth and impact of artificial intelligence in anesthesiology: a bibliometric study from 2004 to 2024.
Front Med (Lausanne). 2025 Jun 2;12:1595060. doi: 10.3389/fmed.2025.1595060. eCollection 2025.
5
Artificial intelligence in anesthesiology: a bibliometric analysis.
Perioper Med (Lond). 2024 Dec 23;13(1):121. doi: 10.1186/s13741-024-00480-x.
6
Artificial Intelligence in Surgery: A Systematic Review of Use and Validation.
J Clin Med. 2024 Nov 24;13(23):7108. doi: 10.3390/jcm13237108.
7
Artificial intelligence-assisted ultrasound-guided regional anaesthesia: An explorative scoping review.
J Exp Orthop. 2024 Aug 14;11(3):e12104. doi: 10.1002/jeo2.12104. eCollection 2024 Jul.
8
Artificial Intelligence in Perioperative Planning and Management of Liver Resection.
Indian J Surg Oncol. 2024 May;15(Suppl 2):186-195. doi: 10.1007/s13193-024-01883-4. Epub 2024 Jan 23.
9
Artificial intelligence for ultrasound scanning in regional anaesthesia: a scoping review of the evidence from multiple disciplines.
Br J Anaesth. 2024 May;132(5):1049-1062. doi: 10.1016/j.bja.2024.01.036. Epub 2024 Mar 5.

本文引用的文献

1
Artificial intelligence using deep neural network learning for automatic location of the interscalene brachial plexus in ultrasound images.
Eur J Anaesthesiol. 2022 Sep 1;39(9):758-765. doi: 10.1097/EJA.0000000000001720. Epub 2022 Jul 20.
2
DeepNerve: A New Convolutional Neural Network for the Localization and Segmentation of the Median Nerve in Ultrasound Image Sequences.
Ultrasound Med Biol. 2020 Sep;46(9):2439-2452. doi: 10.1016/j.ultrasmedbio.2020.03.017. Epub 2020 Jun 9.
3
Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations.
Anesthesiology. 2020 Feb;132(2):379-394. doi: 10.1097/ALN.0000000000002960.
4
Advances in regional anaesthesia and acute pain management: a narrative review.
Anaesthesia. 2020 Jan;75 Suppl 1:e101-e110. doi: 10.1111/anae.14868.
5
Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: a deep learning approach.
Med Biol Eng Comput. 2020 Mar;58(3):471-482. doi: 10.1007/s11517-019-02099-3. Epub 2020 Jan 2.
6
Applying deep learning in recognizing the femoral nerve block region on ultrasound images.
Ann Transl Med. 2019 Sep;7(18):453. doi: 10.21037/atm.2019.08.61.
8
Artificial Intelligence and Machine Learning in Anesthesiology.
Anesthesiology. 2019 Dec;131(6):1346-1359. doi: 10.1097/ALN.0000000000002694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验