Wei Zhongyin, Hu Tinghao, Wei Zhongcheng, Wang Ziyi, Sun Dongqi
College of Economics and Management, Southwest University, Chongqing, 400715, China.
School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou, 221116, China.
Heliyon. 2024 Jul 18;10(15):e34708. doi: 10.1016/j.heliyon.2024.e34708. eCollection 2024 Aug 15.
Since 1978, China's rapid urbanization and industrialization have significantly increased carbon emissions. This study employs spatial autocorrelation, kernel density estimation, and spatiotemporal geographically weighted regression (GTWR) methods to analyze the spatiotemporal evolution characteristics of carbon emissions across 336 Chinese cities from 1978 to 2020. It also explores the dominant influencing factors for different cities at various stages of development. The findings reveal that carbon emissions in Chinese cities exhibit a stepwise growth pattern: "slow growth (1978-1995) - low-level stability (1996-2000) - rapid growth (2001-2012) - high-level stability (2013-2020)." The gap between cities has widened rapidly, and spatially, the distribution follows a "core-periphery" pattern. The increase in carbon emissions in core cities has transformed the urban hierarchy from a "generally low-carbon" structure to a "pyramid" structure. Compared to 1995, the influence of population size on carbon emissions decreased in 2020 (0.54-0.38), while the impact of infrastructure development and technological advances increased (0.02-0.25, 0.09 to 0.19). Due to the varying stages of urban development across regions, the influencing factors of carbon emissions exhibit spatial heterogeneity. Specifically, population size has a stronger positive impact on carbon emissions in the Southeast, technological advances in East and North China, and industrial structure in the Yangtze River Basin region. Infrastructure construction and investment levels show a dampening effect on carbon emissions in the Yangtze River Basin. Finally, the study proposes policy recommendations focusing on implementing regional "gradient" carbon reduction and promoting regional collaborative carbon reduction driven by core cities.
自1978年以来,中国快速的城市化和工业化显著增加了碳排放。本研究采用空间自相关、核密度估计和时空地理加权回归(GTWR)方法,分析了1978年至2020年中国336个城市碳排放的时空演变特征。同时,探讨了不同城市在不同发展阶段的主要影响因素。研究结果表明,中国城市碳排放呈现出阶段性增长模式:“缓慢增长(1978 - 1995年) - 低水平稳定(1996 - 2000年) - 快速增长(2001 - 2012年) - 高水平稳定(2013 - 2020年)”。城市间差距迅速扩大,在空间上,分布呈现“核心 - 外围”格局。核心城市碳排放的增加使城市层级结构从“总体低碳”结构转变为“金字塔”结构。与1995年相比,2020年人口规模对碳排放的影响有所下降(从0.54降至0.38),而基础设施发展和技术进步的影响有所增加(从0.02升至0.25,从0.09升至0.19)。由于各地区城市发展阶段不同,碳排放的影响因素呈现空间异质性。具体而言,人口规模对东南部地区的碳排放有更强的正向影响,技术进步对华东和华北地区有影响,产业结构对长江流域地区有影响。基础设施建设和投资水平对长江流域的碳排放有抑制作用。最后,本研究提出了政策建议,重点是实施区域“梯度”碳减排,并推动以核心城市为驱动的区域协同碳减排。