Ripa Claudio, Munshi Laveena, Kuebler Wolfgang M, Magliocca Aurora, Taccone Fabio S, Ware Lorraine B, Citerio Giuseppe, Laffey John G, Rezoagli Emanuele
School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
Interdepartmental Division of Critical Care Medicine, Sinai Health System/University Health Network, University of Toronto, Toronto, Canada.
Med Gas Res. 2025 Sep 1;15(3):409-419. doi: 10.4103/mgr.MEDGASRES-D-24-00120. Epub 2025 Apr 17.
Oxygen supplementation is widely used to enhance oxygen delivery and to treat or prevent hypoxia; however, it requires careful management to avoid the harmful effects of excessive oxygen exposure. Both hyperoxia (inspiratory oxygen fraction exceeding 0.21) and hyperoxemia (arterial oxygen tension oxygen partial pressure [PaO2] > 100 mmHg) can contribute to lung injury, promote systemic vasoconstriction, and increase the production of reactive oxygen species, which can impair macromolecular and cellular functions. Conversely, in certain situations, hyperoxemia may provide benefits, such as hemodynamic stabilization in hyperdynamic shock, immunomodulation, and bactericidal effects. The literature presents conflicting evidence regarding the impact of different oxygen targets (i.e., PaO2 and/or peripheral saturation of oxygen [SpO2]) on both short- and long-term outcomes in patients with acute critical conditions, such as acute respiratory distress syndrome, sepsis, cardiac arrest, and acute central nervous system injuries. These discrepancies may stem from the small differences between the oxygenation targets used in randomized trials, the physiological limitations of PaO2 and SpO2 targets, which reflect blood oxygen content rather than oxygen delivery, the lack of measurements of microvascular function or oxygen delivery, and the heterogeneity in treatment response. Furthermore, advanced analytical methods (e.g., machine learning) are emerging as promising tools to implement population enrichment strategies. By refining patient sub-group identification, these approaches can significantly optimize precision medicine, enabling more personalized oxygen therapy tailored to individual patient characteristics.
吸氧被广泛用于提高氧输送以及治疗或预防缺氧;然而,需要谨慎管理以避免过度吸氧的有害影响。高氧(吸入氧分数超过0.21)和高氧血症(动脉血氧张力氧分压[PaO2]>100 mmHg)均可导致肺损伤、促进全身血管收缩并增加活性氧的产生,而活性氧会损害大分子和细胞功能。相反,在某些情况下,高氧血症可能有益,如在高动力性休克中实现血流动力学稳定、免疫调节以及杀菌作用。关于不同氧目标(即PaO2和/或外周血氧饱和度[SpO2])对急性危重症患者(如急性呼吸窘迫综合征、脓毒症、心脏骤停和急性中枢神经系统损伤)短期和长期预后的影响,文献提供了相互矛盾的证据。这些差异可能源于随机试验中使用的氧合目标之间的微小差异、PaO2和SpO2目标的生理局限性(其反映的是血氧含量而非氧输送)、缺乏微血管功能或氧输送的测量以及治疗反应的异质性。此外,先进的分析方法(如机器学习)正成为实施人群富集策略的有前景的工具。通过优化患者亚组识别,这些方法可显著优化精准医学,实现更个性化的氧疗,使其适合个体患者特征。