Suppr超能文献

昆虫振子吸引网络中平移过程中的位姿估计在线学习。

Online learning for orientation estimation during translation in an insect ring attractor network.

机构信息

The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.

出版信息

Sci Rep. 2022 Feb 25;12(1):3210. doi: 10.1038/s41598-022-05798-4.

Abstract

Insect neural systems are a promising source of inspiration for new navigation algorithms, especially on low size, weight, and power platforms. There have been unprecedented recent neuroscience breakthroughs with Drosophila in behavioral and neural imaging experiments as well as the mapping of detailed connectivity of neural structures. General mechanisms for learning orientation in the central complex (CX) of Drosophila have been investigated previously; however, it is unclear how these underlying mechanisms extend to cases where there is translation through an environment (beyond only rotation), which is critical for navigation in robotic systems. Here, we develop a CX neural connectivity-constrained model that performs sensor fusion, as well as unsupervised learning of visual features for path integration; we demonstrate the viability of this circuit for use in robotic systems in simulated and physical environments. Furthermore, we propose a theoretical understanding of how distributed online unsupervised network weight modification can be leveraged for learning in a trajectory through an environment by minimizing orientation estimation error. Overall, our results may enable a new class of CX-derived low power robotic navigation algorithms and lead to testable predictions to inform future neuroscience experiments.

摘要

昆虫神经系统是新导航算法的一个很有前途的灵感来源,尤其是在尺寸、重量和功率要求低的平台上。最近在果蝇的行为和神经成像实验以及详细的神经结构连接性映射方面取得了前所未有的神经科学突破。先前已经研究了果蝇中央复合体 (CX) 中定向学习的一般机制;然而,这些基本机制如何扩展到环境中存在平移(不仅仅是旋转)的情况尚不清楚,这对于机器人系统中的导航至关重要。在这里,我们开发了一个受 CX 神经连接约束的模型,该模型可以进行传感器融合以及视觉特征的无监督学习,用于路径集成;我们证明了该电路在模拟和物理环境中的机器人系统中的使用具有可行性。此外,我们提出了一种理论理解,即通过最小化方向估计误差,可以利用分布式在线无监督网络权重修改来学习环境中的轨迹,从而实现学习。总的来说,我们的结果可能为基于 CX 的新型低功耗机器人导航算法的发展提供了可能,并为未来的神经科学实验提供了可测试的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8610/8881593/f29ba6446ca9/41598_2022_5798_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验