Sun Rui, Fisher Robert P
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
J Mol Biol. 2025 Jan 1;437(1):168746. doi: 10.1016/j.jmb.2024.168746. Epub 2024 Aug 13.
The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.
RNA聚合酶II(RNAPII)转录周期的每个阶段都受到细胞周期蛋白依赖性蛋白激酶(CDK)和蛋白磷酸酶网络的调控。RNAPII从起始到终止的进程以其最大亚基RPB1高度重复的羧基末端结构域(CTD)上磷酸化模式的变化为标志,这表明存在一种CTD编码。同时,保守的转录延伸因子SPT5,即DRB敏感性诱导因子(DSIF)的大亚基,其磷酸化状态在时空上受到调控,这可能与转录周期各阶段之间的转变直接相关。在这里,我们回顾了从人类SPT5最近的结构、生化和遗传分析中获得的见解,这些分析表明其两个磷酸化区域在转录的不同点发挥不同的功能。在一个灵活的RNA结合连接区内的磷酸化促进从启动子近端暂停中释放——这通常是基因表达中的一个限速步骤——而在一个重复的羧基末端区域的修饰则被认为有利于持续性延伸,并在终止前被去除。这两个基序中的磷酸化都依赖于正转录延伸因子b(P-TEFb)的催化亚基CDK9;它们在染色质上积累的不同时间以及在转录周期中的功能可能反映了它们被不同磷酸酶去除、被CDK9磷酸化的不同动力学,或者两者兼而有之。SPT5调控的扰动通过 largely unknown机制对模式生物的生存能力和发育产生深远影响,而修饰SPT5的酶已成为癌症的潜在治疗靶点;因此,阐明一种假定的SPT5编码是当务之急。