University of Basel, Basel, Switzerland.
Max Planck Institute for Human Development, Berlin, Germany.
Behav Res Methods. 2024 Dec;56(8):8214-8237. doi: 10.3758/s13428-024-02455-8. Epub 2024 Aug 15.
Large language models (LLMs) have the potential to revolutionize behavioral science by accelerating and improving the research cycle, from conceptualization to data analysis. Unlike closed-source solutions, open-source frameworks for LLMs can enable transparency, reproducibility, and adherence to data protection standards, which gives them a crucial advantage for use in behavioral science. To help researchers harness the promise of LLMs, this tutorial offers a primer on the open-source Hugging Face ecosystem and demonstrates several applications that advance conceptual and empirical work in behavioral science, including feature extraction, fine-tuning of models for prediction, and generation of behavioral responses. Executable code is made available at github.com/Zak-Hussain/LLM4BeSci.git . Finally, the tutorial discusses challenges faced by research with (open-source) LLMs related to interpretability and safety and offers a perspective on future research at the intersection of language modeling and behavioral science.
大型语言模型 (LLMs) 有潜力通过加速和改进研究周期,从概念化到数据分析,从而彻底改变行为科学。与闭源解决方案不同,LLM 的开源框架可以实现透明度、可重复性和遵守数据保护标准,这为它们在行为科学中的应用提供了至关重要的优势。为了帮助研究人员利用 LLM 的潜力,本教程提供了对开源 Hugging Face 生态系统的简介,并展示了几个应用程序,这些应用程序推进了行为科学中的概念和实证工作,包括特征提取、模型微调以进行预测以及生成行为反应。可执行代码可在 github.com/Zak-Hussain/LLM4BeSci.git 上获得。最后,本教程讨论了与(开源)LLM 相关的可解释性和安全性研究所面临的挑战,并对语言模型和行为科学交叉领域的未来研究提供了一个视角。