Suppr超能文献

深度学习重建对 CT 评估胰腺囊性病变的影响。

Effect of deep learning reconstruction on the assessment of pancreatic cystic lesions using computed tomography.

机构信息

Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.

出版信息

Radiol Phys Technol. 2024 Dec;17(4):827-833. doi: 10.1007/s12194-024-00834-6. Epub 2024 Aug 15.

Abstract

This study aimed to compare the image quality and detection performance of pancreatic cystic lesions between computed tomography (CT) images reconstructed by deep learning reconstruction (DLR) and filtered back projection (FBP). This retrospective study included 54 patients (mean age: 67.7 ± 13.1) who underwent contrast-enhanced CT from May 2023 to August 2023. Among eligible patients, 30 and 24 were positive and negative for pancreatic cystic lesions, respectively. DLR and FBP were used to reconstruct portal venous phase images. Objective image quality analyses calculated quantitative image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) using regions of interest on the abdominal aorta, pancreatic lesion, and pancreatic parenchyma. Three blinded radiologists performed subjective image quality assessment and lesion detection tests. Lesion depiction, normal structure illustration, subjective image noise, and overall image quality were utilized as subjective image quality indicators. DLR significantly reduced quantitative image noise compared with FBP (p < 0.001). SNR and CNR were significantly improved in DLR compared with FBP (p < 0.001). Three radiologists rated significantly higher scores for DLR in all subjective image quality indicators (p ≤ 0.029). Performance of DLR and FBP were comparable in lesion detection, with no statistically significant differences in the area under the receiver operating characteristic curve, sensitivity, specificity and accuracy. DLR reduced image noise and improved image quality with a clearer depiction of pancreatic structures. These improvements may have a positive effect on evaluating pancreatic cystic lesions, which can contribute to appropriate management of these lesions.

摘要

本研究旨在比较深度学习重建(DLR)和滤波反投影(FBP)重建的 CT 图像对胰腺囊性病变的图像质量和检出性能。本回顾性研究纳入 2023 年 5 月至 2023 年 8 月期间行增强 CT 检查的 54 例患者(平均年龄:67.7±13.1 岁)。在符合条件的患者中,胰腺囊性病变阳性和阴性患者分别为 30 例和 24 例。采用 DLR 和 FBP 对门静脉期图像进行重建。使用腹部主动脉、胰腺病变和胰腺实质的感兴趣区计算客观图像质量分析的定量图像噪声、信噪比(SNR)和对比噪声比(CNR)。三位盲法放射科医师进行主观图像质量评估和病变检出测试。病变描绘、正常结构显示、主观图像噪声和整体图像质量作为主观图像质量指标。与 FBP 相比,DLR 显著降低了定量图像噪声(p<0.001)。与 FBP 相比,DLR 显著提高了 SNR 和 CNR(p<0.001)。三位放射科医师在所有主观图像质量指标中均对 DLR 给予了更高的评分(p≤0.029)。DLR 和 FBP 在病变检出方面的性能相当,受试者工作特征曲线下面积、敏感性、特异性和准确性均无统计学差异。DLR 降低了图像噪声,提高了图像质量,使胰腺结构的显示更加清晰。这些改进可能对评估胰腺囊性病变产生积极影响,有助于对这些病变进行适当的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf27/11579065/7ceafefe05f8/12194_2024_834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验