Suppr超能文献

膝关节和髋关节置换术后手术部位感染监测:基于电子健康记录优化一种用于检测高危患者的算法。

Surgical site infection surveillance in knee and hip arthroplasty: optimizing an algorithm to detect high-risk patients based on electronic health records.

机构信息

Infection and Antimicrobial Resistance Control and Prevention Unit, Hospital Epidemiology Centre, Unidade Local de Saúde São João, Porto, Portugal.

Unidad Clínica de Enfermedades Infecciosas y Microbiología, Departamento de Medicina, Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Seville, Spain.

出版信息

Antimicrob Resist Infect Control. 2024 Aug 15;13(1):90. doi: 10.1186/s13756-024-01445-x.

Abstract

BACKGROUND

Surgical site infection (SSI) is an important cause of disease burden and healthcare costs. Fully manual surveillance is time-consuming and prone to subjectivity and inter-individual variability, which can be partly overcome by semi-automated surveillance. Algorithms used in orthopaedic SSI semi-automated surveillance have reported high sensitivity and important workload reduction. This study aimed to design and validate different algorithms to identify patients at high risk of SSI after hip or knee arthroplasty.

METHODS

Retrospective data from manual SSI surveillance between May 2015 and December 2017 were used as gold standard for validation. Knee and hip arthroplasty were included, patients were followed up for 90 days and European Centre for Disease Prevention and Control SSI classification was applied. Electronic health records data was used to generate different algorithms, considering combinations of the following variables: ≥1 positive culture, ≥ 3 microbiological requests, antimicrobial therapy ≥ 7 days, length of hospital stay ≥ 14 days, orthopaedics readmission, orthopaedics surgery and emergency department attendance. Sensitivity, specificity, negative and predictive value, and workload reduction were calculated.

RESULTS

In total 1631 surgical procedures were included, of which 67.5% (n = 1101) in women; patients' median age was 69 years (IQR 62 to 77) and median Charlson index 2 (IQR 1 to 3). Most surgeries were elective (92.5%; n = 1508) and half were hip arthroplasty (52.8%; n = 861). SSI incidence was 3.8% (n = 62), of which 64.5% were deep or organ/space infections. Positive culture was the single variable with highest sensitivity (64.5%), followed by orthopaedic reintervention (59.7%). Twenty-four algorithms presented 90.3% sensitivity for all SSI types and 100% for deep and organ/space SSI. Workload reduction ranged from 59.7 to 67.7%. The algorithm including ≥ 3 microbiological requests, length of hospital stay ≥ 14 days and emergency department attendance, was one of the best options in terms of sensitivity, workload reduction and feasibility for implementation.

CONCLUSIONS

Different algorithms with high sensitivity to detect all types of SSI can be used in real life, tailored to clinical practice and data availability. Emergency department attendance can be an important variable to identify superficial SSI in semi-automated surveillance.

摘要

背景

手术部位感染(SSI)是疾病负担和医疗保健成本的重要原因。完全手动监测既耗时又容易受到主观性和个体间变异性的影响,而半自动化监测可以部分克服这些问题。在骨科 SSI 半自动监测中使用的算法已经报道了较高的灵敏度和重要的工作量减少。本研究旨在设计和验证不同的算法,以识别髋关节或膝关节置换术后 SSI 风险较高的患者。

方法

使用 2015 年 5 月至 2017 年 12 月期间手动 SSI 监测的回顾性数据作为验证的金标准。包括膝关节和髋关节置换术,患者随访 90 天,并应用欧洲疾病预防控制中心 SSI 分类。使用电子健康记录数据生成不同的算法,考虑以下变量的组合:≥1 次阳性培养、≥3 次微生物学请求、抗菌治疗≥7 天、住院时间≥14 天、骨科再入院、骨科手术和急诊就诊。计算灵敏度、特异性、阴性预测值和阳性预测值以及工作量减少。

结果

共纳入 1631 例手术,其中 67.5%(n=1101)为女性;患者中位年龄为 69 岁(IQR 62 至 77),中位 Charlson 指数为 2(IQR 1 至 3)。大多数手术为择期(92.5%;n=1508),其中一半为髋关节置换术(52.8%;n=861)。SSI 发生率为 3.8%(n=62),其中 64.5%为深部或器官/空间感染。阳性培养是具有最高灵敏度(64.5%)的单一变量,其次是骨科再干预(59.7%)。24 种算法对所有 SSI 类型的灵敏度均为 90.3%,对深部和器官/空间 SSI 的灵敏度均为 100%。工作量减少范围为 59.7%至 67.7%。包括≥3 次微生物学请求、住院时间≥14 天和急诊就诊的算法是一种灵敏度、工作量减少和实施可行性都较好的选择。

结论

可用于实际生活中的高灵敏度检测所有类型 SSI 的不同算法可根据临床实践和数据可用性进行调整。急诊就诊可以成为半自动监测中识别浅表 SSI 的一个重要变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f745/11328479/015063eb148a/13756_2024_1445_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验