文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖挤出纳米纤维生物支架局部递送间充质干细胞促进糖尿病创面愈合。

Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing.

机构信息

Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Stem Cell Res Ther. 2024 Aug 15;15(1):262. doi: 10.1186/s13287-024-03772-7.


DOI:10.1186/s13287-024-03772-7
PMID:39148112
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11328517/
Abstract

BACKGROUND: Mesenchymal stem cells (MSCs)-based treatment strategy has shown promise in bolstering the healing process of chronic wounds in diabetic patients, who are at risk of amputation and mortality. To overcome the drawbacks of suboptimal cell retention and diminished cell viability at the injury site, a novel nanofibrous biomaterial-based scaffold was developed by using a controlled extrusion of a polymeric solution to deliver the cells (human adipose-derived MSCs (ADMSCs) and placenta-derived MSCs (PLMSCs)) locally to the animal model of diabetic ulcers. METHODS: The physicochemical and biological properties of the nano-bioscaffold were characterized in terms of microscopic images, FTIR spectroscopy, tensile testing, degradation and swelling tests, contact angle measurements, MTT assay, and cell attachment evaluation. To evaluate the therapeutic efficacy, a study using an excisional wound model was conducted on diabetic rats. RESULTS: The SEM and AFM images of scaffolds revealed a network of uniform nanofibers with narrow diameters between 100-130 nm and surface roughness less than 5 nm, respectively. ADMSCs and PLMSCs had a typical spindle-shaped or fibroblast-like morphology when attached to the scaffold. Desired characteristics in terms of swelling, hydrophilicity, biodegradation rate, and biocompatibility were achieved with the CS70 formulation. The wound healing process was accelerated according to wound closure rate assay upon treatment with MSCs loaded scaffold resulting in increased re-epithelialization, neovascularization, and less inflammatory reaction. Our findings unequivocally demonstrated that the cell-loaded nano-bioscaffold exhibited more efficacy compared with its acellular counterpart. In summation, our study underscores the potential of this innovative cellular scaffold as a viable solution for enhancing the healing of diabetic ulcers. CONCLUSION: The utilization of MSCs in a nanofibrous biomaterial framework demonstrates significant promise, providing a novel avenue for advancing wound care and diabetic ulcer management.

摘要

背景:基于间充质干细胞(MSCs)的治疗策略在增强糖尿病患者慢性伤口的愈合过程方面显示出了前景,这些患者有截肢和死亡的风险。为了克服细胞在损伤部位的保留效果不佳和细胞活力降低的缺点,我们使用聚合物溶液的受控挤出开发了一种新型纳米纤维生物材料支架,以将细胞(人脂肪来源的间充质干细胞(ADMSCs)和胎盘来源的间充质干细胞(PLMSCs))局部递送到糖尿病溃疡动物模型中。

方法:从微观图像、傅里叶变换红外光谱、拉伸试验、降解和溶胀试验、接触角测量、MTT 测定和细胞附着评估等方面对纳米生物支架的物理化学和生物学特性进行了表征。为了评估治疗效果,在糖尿病大鼠上进行了一项使用切除伤口模型的研究。

结果:支架的 SEM 和 AFM 图像显示出具有均匀纳米纤维网络的形态,其直径在 100-130nm 之间,表面粗糙度小于 5nm。ADMSCs 和 PLMSCs 附着在支架上时呈现典型的纺锤形或成纤维细胞样形态。CS70 制剂达到了所需的膨胀、亲水性、生物降解率和生物相容性等特性。在 MSC 负载支架治疗后,根据伤口闭合率测定,伤口愈合过程加速,导致再上皮化、新生血管形成增加和炎症反应减少。我们的研究结果明确表明,负载细胞的纳米生物支架比无细胞支架更有效。总之,我们的研究强调了这种创新细胞支架作为增强糖尿病溃疡愈合的可行解决方案的潜力。

结论:MSCs 在纳米纤维生物材料框架中的应用具有显著的潜力,为推进伤口护理和糖尿病溃疡管理提供了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/5bf4aed6affc/13287_2024_3772_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/100cf11b0e21/13287_2024_3772_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/6774046fd53b/13287_2024_3772_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/85b30aaef163/13287_2024_3772_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/1891418ffd67/13287_2024_3772_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/2e50810a8ba3/13287_2024_3772_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/14ef8e58ac5a/13287_2024_3772_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/47942c9520ef/13287_2024_3772_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/5285d9aa4141/13287_2024_3772_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/153e04bb474e/13287_2024_3772_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/15ad16175253/13287_2024_3772_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/5bf4aed6affc/13287_2024_3772_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/100cf11b0e21/13287_2024_3772_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/6774046fd53b/13287_2024_3772_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/85b30aaef163/13287_2024_3772_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/1891418ffd67/13287_2024_3772_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/2e50810a8ba3/13287_2024_3772_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/14ef8e58ac5a/13287_2024_3772_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/47942c9520ef/13287_2024_3772_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/5285d9aa4141/13287_2024_3772_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/153e04bb474e/13287_2024_3772_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/15ad16175253/13287_2024_3772_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fba/11328517/5bf4aed6affc/13287_2024_3772_Fig11_HTML.jpg

相似文献

[1]
Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing.

Stem Cell Res Ther. 2024-8-15

[2]
Bioinspired Collagen Scaffold Loaded with bFGF-Overexpressing Human Mesenchymal Stromal Cells Accelerating Diabetic Skin Wound Healing via HIF-1 Signal Pathway Regulated Neovascularization.

ACS Appl Mater Interfaces. 2024-9-4

[3]
Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats.

Acta Biomater. 2018-9-13

[4]
Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice.

Stem Cell Res Ther. 2014-1-14

[5]
Human decellularized adipose matrix derived hydrogel assists mesenchymal stem cells delivery and accelerates chronic wound healing.

J Biomed Mater Res A. 2021-8

[6]
A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing.

Mater Sci Eng C Mater Biol Appl. 2020-6

[7]
A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.

Acta Biomater. 2017-9-15

[8]
Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells.

Am J Physiol Cell Physiol. 2018-11-7

[9]
Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds.

Cell Tissue Res. 2018-10-18

[10]
Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing.

Biofabrication. 2023-10-10

引用本文的文献

[1]
Applications and prospects of biomaterials in diabetes management.

Front Bioeng Biotechnol. 2025-3-7

[2]
Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing.

Stem Cell Res Ther. 2024-11-9

本文引用的文献

[1]
pH-sensitive bilayer electrospun nanofibers based on ethyl cellulose and Eudragit S-100 as a dual delivery system for treatment of the burn wounds; preparation, characterizations, and in-vitro/in-vivo assessment.

Int J Biol Macromol. 2023-9-30

[2]
Tissue Sheet Engineered Using Human Umbilical Cord-Derived Mesenchymal Stem Cells Improves Diabetic Wound Healing.

Int J Mol Sci. 2022-10-21

[3]
Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds.

Stem Cell Res Ther. 2022-8-20

[4]
Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection.

Biomater Adv. 2022-8

[5]
A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing.

RSC Adv. 2018-2-16

[6]
Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications.

Polymers (Basel). 2021-12-13

[7]
Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: A randomized clinical trial.

Int Immunopharmacol. 2021-12

[8]
Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment.

Cytotherapy. 2021-11

[9]
Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds with a Multifunctional Wound Dressing.

Mol Pharm. 2021-8-2

[10]
Collagen in Wound Healing.

Bioengineering (Basel). 2021-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索