Suppr超能文献

基于机器学习的综合鸭DNA指纹识别用于品种鉴定。

Comprehensive duck DNA fingerprinting based on machine learning for breed identification.

作者信息

Yan DengKe, Zhu Feng, Wang HaoLin, Yin ZhongTao, Hou ZhuoCheng

机构信息

National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.

Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.

出版信息

Poult Sci. 2025 May 29;104(8):105359. doi: 10.1016/j.psj.2025.105359.

Abstract

Duck is one of the most widely distributed waterfowl in the world, with more than 6 billion of them farmed annually in the world, and has great economic and ecological value. Amidst mounting global prioritization of duck genetic resource exploration and prevalent inter-varietal hybridization events, the traditional breed identification methods are difficult to address actual requirements, restricting the utilization, development and protection of duck germplasm resources. This study aims to develop an accurate, efficient, and scalable duck DNA fingerprinting system based on genomic technologies and machine learning methods to address the urgent need for breed identification tools in high-quality agricultural production and ecological protection. Our study aims to construct a global duck DNA fingerprint map based on genomic data and machine learning algorithm, develop an accurate, efficient and scalable duck DNA fingerprinting identification tool, and solve the urgent need for breed identification tools for high-quality agricultural production and ecological protection. In this study, we obtained the whole genome resequencing data of 196 duck individuals from 16 breeds and constructed a high-density duck population variation dataset containing 2,360,039 SNPs. Four characteristic molecular marker selection methods (Delta, Average Euclidean Distance (AED), Polymorphism Information Content (PIC), and Fixation Index (F)) and four machine learning classification algorithms (Random Forest (RF), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Naive Bayes (NB)) were tested. The results showed that AED indicator had the best performance in selecting SNP markers in ducks, and the classification accuracy was the highest (98.38 %) when 2000 SNP sites were selected. SVM algorithm showed the best classification performance in ducks, with the classification accuracy of 98.71 % and the running time was within 70 seconds. We constructed the duck DNA fingerprinting maps of 16 breeds based on the AED indicator and SVM algorithm, each containing 200 SNP markers. We have also developed a user-friendly and efficient duck DNA fingerprinting identification tool that could achieve identification of large-scale genetic resources, and also collect new duck genetic resources and use them for breed identification. Our results provide advanced method and utility tool support for identifying and utilizing world-wide duck germplasm resources and a reference for the development of DNA fingerprinting maps for other major agricultural animals.

摘要

鸭是世界上分布最广的水禽之一,全球每年养殖超过60亿只,具有重要的经济和生态价值。在全球对鸭遗传资源探索的重视日益增加以及品种间杂交事件普遍存在的背景下,传统的品种鉴定方法难以满足实际需求,限制了鸭种质资源的利用、开发和保护。本研究旨在基于基因组技术和机器学习方法开发一种准确、高效且可扩展的鸭DNA指纹识别系统,以满足优质农业生产和生态保护中对品种鉴定工具的迫切需求。我们的研究旨在基于基因组数据和机器学习算法构建全球鸭DNA指纹图谱,开发一种准确、高效且可扩展的鸭DNA指纹识别工具,并解决优质农业生产和生态保护对品种鉴定工具的迫切需求。在本研究中,我们获得了来自16个品种的196只鸭个体的全基因组重测序数据,构建了一个包含2360039个单核苷酸多态性(SNP)的高密度鸭群体变异数据集。测试了四种特征分子标记选择方法(Delta、平均欧氏距离(AED)、多态信息含量(PIC)和固定指数(F))和四种机器学习分类算法(随机森林(RF)、支持向量机(SVM)、线性判别分析(LDA)和朴素贝叶斯(NB))。结果表明,AED指标在鸭SNP标记选择中表现最佳,选择2000个SNP位点时分类准确率最高(98.38%)。SVM算法在鸭中表现出最佳的分类性能,分类准确率为98.71%,运行时间在70秒以内。我们基于AED指标和SVM算法构建了16个品种的鸭DNA指纹图谱,每个图谱包含200个SNP标记。我们还开发了一个用户友好且高效的鸭DNA指纹识别工具,该工具可以实现对大规模遗传资源的鉴定,还可以收集新的鸭遗传资源并用于品种鉴定。我们的研究结果为全球鸭种质资源的鉴定和利用提供了先进的方法和实用工具支持,并为其他主要农业动物DNA指纹图谱的开发提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9630/12178712/76566cfa3262/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验