Pérez Salvador, Rius-Pérez Sergio
Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
Antioxidants (Basel). 2022 Jul 19;11(7):1394. doi: 10.3390/antiox11071394.
Macrophage polarization refers to the process by which macrophages can produce two distinct functional phenotypes: M1 or M2. The balance between both strongly affects the progression of inflammatory disorders. Here, we review how redox signals regulate macrophage polarization and reprogramming during acute inflammation. In M1, macrophages augment NADPH oxidase isoform 2 (NOX2), inducible nitric oxide synthase (iNOS), synaptotagmin-binding cytoplasmic RNA interacting protein (SYNCRIP), and tumor necrosis factor receptor-associated factor 6 increase oxygen and nitrogen reactive species, which triggers inflammatory response, phagocytosis, and cytotoxicity. In M2, macrophages down-regulate NOX2, iNOS, SYNCRIP, and/or up-regulate arginase and superoxide dismutase type 1, counteract oxidative and nitrosative stress, and favor anti-inflammatory and tissue repair responses. M1 and M2 macrophages exhibit different metabolic profiles, which are tightly regulated by redox mechanisms. Oxidative and nitrosative stress sustain the M1 phenotype by activating glycolysis and lipid biosynthesis, but by inhibiting tricarboxylic acid cycle and oxidative phosphorylation. This metabolic profile is reversed in M2 macrophages because of changes in the redox state. Therefore, new therapies based on redox mechanisms have emerged to treat acute inflammation with positive results, which highlights the relevance of redox signaling as a master regulator of macrophage reprogramming.
巨噬细胞极化是指巨噬细胞可产生两种不同功能表型(即M1或M2)的过程。两者之间的平衡强烈影响炎症性疾病的进展。在此,我们综述氧化还原信号在急性炎症期间如何调节巨噬细胞极化和重编程。在M1型巨噬细胞中,会增强烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶亚型2(NOX2)、诱导型一氧化氮合酶(iNOS)、与突触结合蛋白结合的胞质RNA相互作用蛋白(SYNCRIP),且肿瘤坏死因子受体相关因子6会增加氧和氮反应性物质,从而引发炎症反应、吞噬作用和细胞毒性。在M2型巨噬细胞中,会下调NOX2、iNOS、SYNCRIP,和/或上调精氨酸酶和超氧化物歧化酶1,抵消氧化应激和亚硝化应激,并促进抗炎和组织修复反应。M1和M2巨噬细胞表现出不同的代谢特征,这些特征受到氧化还原机制的严格调控。氧化应激和亚硝化应激通过激活糖酵解和脂质生物合成来维持M1表型,但会抑制三羧酸循环和氧化磷酸化。由于氧化还原状态的变化,这种代谢特征在M2巨噬细胞中会逆转。因此,基于氧化还原机制的新疗法已出现并用于治疗急性炎症,且取得了积极效果,这凸显了氧化还原信号作为巨噬细胞重编程主要调节因子的相关性。