McGraw Michael L, Addison Bennett, Clarke Ryan W, Allen Robert D, Rorrer Nicholas A
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
ACS Sustain Chem Eng. 2024 Aug 2;12(32):11913-11927. doi: 10.1021/acssuschemeng.4c01965. eCollection 2024 Aug 12.
Large composite structures, such as those used in wind energy applications, rely on the bulk polymerization of thermosets on an impressively large scale. To accomplish this, traditional thermoset polymerizations require both elevated temperatures (>100 °C) and extended cure durations (>5 h) for complete conversion, necessitating the use of oversize ovens or heated molds. In turn, these requirements lead to energy-intensive polymerizations, incurring high manufacturing costs and process emissions. In this study, we develop thermoset polymerizations that can be initiated at room temperature through a transformative "chemical heating" concept, in which the exothermic energy of a secondary reaction is used to facilitate the heating of a primary thermoset polymerization. By leveraging a redox-initiated methacrylate free radical polymerization as a source of exothermic chemical energy, we can achieve peak reaction temperatures >140 °C to initiate the polymerization of epoxy-anhydride thermosets without external heating. Furthermore, by employing Trojan horse methacrylate monomers to induce mixing between methacrylate and epoxy-anhydride domains, we achieve the synthesis of homogeneous hybrid polymeric materials with competitive thermomechanical properties and tunability. Herein, we establish a proof-of-concept for our innovative chemical heating method and advocate for its industrial integration for more energy-efficient and streamlined manufacturing of wind blades and large composite parts more broadly.
大型复合结构,如用于风能应用的结构,依赖于热固性材料在令人印象深刻的大规模上的本体聚合。为实现这一点,传统的热固性聚合需要高温(>100°C)和延长的固化时间(>5小时)才能完全转化,这就需要使用超大的烤箱或加热模具。相应地,这些要求导致能源密集型聚合,产生高昂的制造成本和工艺排放。在本研究中,我们开发了一种热固性聚合方法,该方法可以通过一种变革性的“化学加热”概念在室温下引发,其中二级反应的放热能量用于促进一级热固性聚合的加热。通过利用氧化还原引发的甲基丙烯酸酯自由基聚合作为放热化学能量的来源,我们可以实现>140°C的峰值反应温度,从而在不进行外部加热的情况下引发环氧-酸酐热固性材料的聚合。此外,通过使用特洛伊木马甲基丙烯酸酯单体来诱导甲基丙烯酸酯和环氧-酸酐域之间的混合,我们实现了具有竞争力的热机械性能和可调性的均匀杂化聚合物材料的合成。在此,我们为我们创新的化学加热方法建立了概念验证,并倡导将其工业集成,以更节能、更简化地制造风力叶片和更广泛的大型复合部件。