Suppr超能文献

差分进化超像素分割。

Differential Evolutionary Superpixel Segmentation.

出版信息

IEEE Trans Image Process. 2018 Mar;27(3):1390-1404. doi: 10.1109/TIP.2017.2778569. Epub 2017 Nov 29.

Abstract

Superpixel segmentation has been of increasing importance in many computer vision applications recently. To handle the problem, most state-of-the-art algorithms either adopt a local color variance model or a local optimization algorithm. This paper develops a new approach, named differential evolutionary superpixels, which is able to optimize the global properties of segmentation by means of a global optimizer. We design a comprehensive objective function aggregating within-superpixel error, boundary gradient, and a regularization term. Minimizing the within-superpixel error enforces the homogeneity of superpixels. In addition, the introduction of boundary gradient drives the superpixel boundaries to capture the natural image boundaries, so as to make each superpixel overlaps with a single object. The regularizer further encourages producing similarly sized superpixels that are friendly to human vision. The optimization is then accomplished by a powerful global optimizer-differential evolution. The algorithm constantly evolves the superpixels by mimicking the process of natural evolution, while using a linear complexity to the image size. Experimental results and comparisons with eleven state-of-the-art peer algorithms verify the promising performance of our algorithm.

摘要

超像素分割在最近的许多计算机视觉应用中变得越来越重要。为了解决这个问题,大多数最新的算法要么采用局部颜色方差模型,要么采用局部优化算法。本文提出了一种新的方法,称为差分进化超像素,它能够通过全局优化器来优化分割的全局属性。我们设计了一个综合的目标函数,它聚合了超像素内误差、边界梯度和正则化项。最小化超像素内误差可以强制超像素的同质性。此外,边界梯度的引入驱使超像素边界捕捉自然图像边界,从而使每个超像素与单个对象重叠。正则项进一步鼓励生成对人眼友好的大小相似的超像素。优化过程由一种强大的全局优化器——差分进化来完成。该算法通过模拟自然进化的过程来不断进化超像素,同时图像大小的复杂度为线性。实验结果和与十一种最新的同类算法的比较验证了我们算法的出色性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验