Wu Chenzhong, Chen Meida, Wang Bin, Luo Leqing, Zhou Qian, Mao Guangtao, Xiong Yuan, Wang Qingmei
Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
Chem Sci. 2024 Jul 8;15(32):12989-13000. doi: 10.1039/d4sc02824d. eCollection 2024 Aug 14.
Regulating the chemical environment of materials to optimize their electronic structure, leading to the optimal adsorption energies of intermediates, is of paramount importance to improving the performance of electrocatalysts, yet remains an immense challenge. Herein, we design a harmonious axial-coordination Pt Fe/FeNCCl catalyst that integrates a structurally ordered PtFe intermetallic with an orbital electron-delocalization FeNCCl support for synergistically efficient oxygen reduction catalysis. The obtained PtFe/FeNCCl with a favorable atomic arrangement and surface composition exhibits enhanced oxygen reduction reaction (ORR) intrinsic activity and durability, achieving a mass activity (MA) and specific activity (SA) of 1.637 A mg and 2.270 mA cm, respectively. Detailed X-ray absorption fine spectroscopy (XAFS) further confirms the axial-coupling effect of the FeNCCl substrate by configuring the Fe-N bond to ∼1.92 Å and the Fe-Cl bond to ∼2.06 Å. Additionally, Fourier transforms of the extended X-ray absorption fine structure (FT-EXAFS) demonstrate relatively prominent peaks at ∼1.5 Å, ascribed to the contribution of the Fe-N/Fe-Cl, further indicating the construction of the FeNCCl moiety structure. More importantly, the electron localization function (ELF) and density functional theory (DFT) further determine an orbital electron delocalization effect due to the strong axial traction between the Cl atoms and FeN, resulting in electron redistribution and modification of the coordination surroundings, thus optimizing the adsorption free energy of OH intermediates and effectively accelerating the ORR catalytic kinetic process.
调控材料的化学环境以优化其电子结构,从而实现中间体的最佳吸附能,对于提高电催化剂的性能至关重要,但仍然是一项巨大的挑战。在此,我们设计了一种和谐的轴向配位Pt Fe/FeNCCl催化剂,它将结构有序的PtFe金属间化合物与具有轨道电子离域的FeNCCl载体相结合,用于协同高效的氧还原催化。所制备的具有良好原子排列和表面组成的PtFe/FeNCCl表现出增强的氧还原反应(ORR)本征活性和耐久性,质量活性(MA)和比活性(SA)分别达到1.637 A mg 和2.270 mA cm 。详细的X射线吸收精细结构光谱(XAFS)通过将Fe-N键配置为1.92 Å和Fe-Cl键配置为2.06 Å,进一步证实了FeNCCl底物的轴向耦合效应。此外,扩展X射线吸收精细结构的傅里叶变换(FT-EXAFS)在~1.5 Å处显示出相对突出的峰,归因于Fe-N/Fe-Cl的贡献,进一步表明了FeNCCl部分结构的构建。更重要的是,电子定域函数(ELF)和密度泛函理论(DFT)进一步确定了由于Cl原子与FeN之间的强轴向牵引而产生的轨道电子离域效应,导致电子重新分布和配位环境的改变,从而优化了OH中间体的吸附自由能并有效地加速了ORR催化动力学过程。