Suppr超能文献

多尺度模拟揭示了致癌突变加速p53C相分离的驱动力。

Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations.

作者信息

Yu Yawei, Liu Qian, Zeng Jiyuan, Tan Yuan, Tang Yiming, Wei Guanghong

机构信息

Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China

出版信息

Chem Sci. 2024 Jul 15;15(32):12806-12818. doi: 10.1039/d4sc03645j. eCollection 2024 Aug 14.

Abstract

Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.

摘要

p53发生液-液相分离(LLPS)以形成液体凝聚物,这与细胞功能及功能失调有关。p53凝聚物可能作为淀粉样纤维前体引发p53聚集,而这与致癌性功能获得及多种人类癌症相关。在胶质母细胞瘤和肝细胞癌中分别检测到位于p53核心结构域(p53C)的M237I和R249S突变。有趣的是,这些p53C突变体也能发生LLPS和液-固相变,且速度比野生型p53C更快。然而,p53C加速LLPS和液-固转变的潜在分子基础仍知之甚少。在此,我们通过多尺度分子动力学模拟探究M237I/R249S突变诱导的p53C结构改变和相分离行为。全原子模拟揭示了M237I突变体锌结合结构域以及R249S突变体的loop3和锌结合结构域中的构象破坏。这两个突变增强了这些区域的疏水暴露并减弱了分子内相互作用,这可能加速p53C的LLPS和聚集。Martini 3粗粒化模拟证明了p53C的自发相分离以及M237I/R249S突变对p53C相分离的加速作用。重要的是,我们发现在粗粒化模拟中观察到的分子间相互作用增强的区域与在全原子模拟中观察到的分子内相互作用减弱的破坏区域一致,这表明M237I/R249S突变诱导的局部结构破坏加速了p53C的LLPS。本研究揭示了两种癌症相关突变加速p53C的LLPS和聚集的分子机制,为通过靶向相分离过程进行抗癌治疗提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bf7/11323318/5994367957b3/d4sc03645j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验