Osbourne Romani, Thayer Kelly M
Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America.
College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America.
PLoS Comput Biol. 2025 May 2;21(5):e1012382. doi: 10.1371/journal.pcbi.1012382. eCollection 2025 May.
The link between p53 tumor suppressive functions and organismal lifespan is multifaceted. Its DNA-repair mechanism is longevity-enhancing while its role in cellular senescence pathways induces pro-aging phenotypes. To understand how p53 may regulate organismal lifespan, cross-species genotype-phenotype (GP) studies of the p53 DNA-binding domain (DBD) have been used to assess the correlation of amino acid changes to lifespan. Amino acid changes in non-DNA-binding regions such as the transactivation (TAD), proline-rich (PRD), regulatory (REG), and tetramerization (TET) are largely unexplored. In addition, existing GP correlation tools such as SigniSite do not account for phylogenetic relationships between aligned sequences in correlating genotypic differences to phenotypes such as lifespan. To identify phylogenetically significant, longevity-correlated residues in full-length p53 alignments, we developed a Python- and R-based workflow, Relative Evolutionary Scoring (RES). While RES-predicted longevity-associated residues (RPLARs) are concentrated primarily in the DBD, the PRD, TET, and REG domains also house RPLARs. While yeast functional assay enrichment reveals that RPLARs may be dispensable for p53-mediated transactivation, PEPPI and Rosetta-based protein-protein interaction prediction suggests a role for RPLARs in p53 stability and interaction interfaces of tumor suppressive protein-protein complexes. With experimental validation of the RPLARs' roles in p53 stability, transactivation, and involvement in senescence-regulatory pathways, we can gain crucial insights into mechanisms underlying dysregulated tumor suppression and accelerated aging.
p53肿瘤抑制功能与生物体寿命之间的联系是多方面的。其DNA修复机制可延长寿命,而其在细胞衰老途径中的作用则会诱导促衰老表型。为了了解p53如何调节生物体寿命,已采用对p53 DNA结合结构域(DBD)进行跨物种基因型-表型(GP)研究来评估氨基酸变化与寿命的相关性。非DNA结合区域(如反式激活结构域(TAD)、富含脯氨酸结构域(PRD)、调节结构域(REG)和四聚化结构域(TET))中的氨基酸变化在很大程度上尚未得到探索。此外,现有的GP相关性工具(如SigniSite)在将基因型差异与寿命等表型相关联时,并未考虑比对序列之间的系统发育关系。为了在全长p53比对中识别具有系统发育意义的、与寿命相关的残基,我们开发了一种基于Python和R的工作流程,即相对进化评分(RES)。虽然RES预测的与寿命相关的残基(RPLARs)主要集中在DBD中,但PRD、TET和REG结构域中也存在RPLARs。虽然酵母功能测定富集结果表明RPLARs对于p53介导的反式激活可能是可有可无的,但基于PEPPI和Rosetta的蛋白质-蛋白质相互作用预测表明RPLARs在p53稳定性以及肿瘤抑制蛋白-蛋白质复合物的相互作用界面中发挥作用。通过对RPLARs在p53稳定性、反式激活以及参与衰老调节途径中的作用进行实验验证,我们可以深入了解肿瘤抑制失调和加速衰老背后的机制。