Heydari Amir, Ahmadi Abbas, Kim Tae Hyung, Bilgic Berkin
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.
Department of Computer Engineering, Hongik University, Seoul, Korea.
ArXiv. 2024 Aug 6:arXiv:2408.02988v1.
Quantification of tissue parameters using MRI is emerging as a powerful tool in clinical diagnosis and research studies. The need for multiple long scans with different acquisition parameters prohibits quantitative MRI from reaching widespread adoption in routine clinical and research exams. Accelerated parameter mapping techniques leverage parallel imaging, signal modelling and deep learning to offer more practical quantitative MRI acquisitions. However, the achievable acceleration and the quality of maps are often limited. Joint MAPLE is a recent state-of-the-art multi-parametric and scan-specific parameter mapping technique with promising performance at high acceleration rates. It synergistically combines parallel imaging, model-based and machine learning approaches for joint mapping of , proton density and the field inhomogeneity. However, Joint MAPLE suffers from prohibitively long reconstruction time to estimate the maps from a multi-echo, multi-flip angle (MEMFA) dataset at high resolution in a scan-specific manner. In this work, we propose a faster version of Joint MAPLE which retains the mapping performance of the original version. Coil compression, random slice selection, parameter-specific learning rates and transfer learning are synergistically combined in the proposed framework. It speeds-up the reconstruction time up to 700 times than the original version and processes a whole-brain MEMFA dataset in 21 minutes on average, which originally requires ~260 hours for Joint MAPLE. The mapping performance of the proposed framework is ~2-fold better than the standard and the state-of-the-art evaluated reconstruction techniques on average in terms of the root mean squared error.
利用磁共振成像(MRI)对组织参数进行量化,正逐渐成为临床诊断和研究中的一项强大工具。由于需要使用不同采集参数进行多次长时间扫描,定量MRI无法在常规临床和研究检查中广泛应用。加速参数映射技术利用并行成像、信号建模和深度学习,提供了更实用的定量MRI采集方法。然而,可实现的加速倍数和映射质量往往受到限制。联合MAPLE是一种最新的多参数、特定扫描的参数映射技术,在高加速率下具有良好的性能。它将并行成像、基于模型的方法和机器学习方法协同结合,用于联合映射、质子密度和场不均匀性。然而,联合MAPLE在以特定扫描方式从多回波、多翻转角(MEMFA)数据集中高分辨率估计映射时,重建时间长得令人望而却步。在这项工作中,我们提出了一种更快版本的联合MAPLE,它保留了原始版本的映射性能。在所提出的框架中,协同结合了线圈压缩、随机切片选择、特定参数的学习率和迁移学习。它将重建时间比原始版本加快了700倍,平均在21分钟内处理一个全脑MEMFA数据集,而联合MAPLE原本需要约260小时。在所提出的框架的映射性能在均方根误差方面平均比标准和最先进的评估重建技术好约2倍。