Suppr超能文献

基于深度模型的磁共振参数映射网络(DOPAMINE),用于使用可变翻转角方法进行快速 T1 映射。

Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.

机构信息

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

出版信息

Med Image Anal. 2021 May;70:102017. doi: 10.1016/j.media.2021.102017. Epub 2021 Feb 24.

Abstract

Quantitative tissue characteristics, which provide valuable diagnostic information, can be represented by magnetic resonance (MR) parameter maps using magnetic resonance imaging (MRI); however, a long scan time is necessary to acquire them, which prevents the application of quantitative MR parameter mapping to real clinical protocols. For fast MR parameter mapping, we propose a deep model-based MR parameter mapping network called DOPAMINE that combines a deep learning network with a model-based method to reconstruct MR parameter maps from undersampled multi-channel k-space data. DOPAMINE consists of two networks: 1) an MR parameter mapping network that uses a deep convolutional neural network (CNN) that estimates initial parameter maps from undersampled k-space data (CNN-based mapping), and 2) a reconstruction network that removes aliasing artifacts in the parameter maps with a deep CNN (CNN-based reconstruction) and an interleaved data consistency layer by an embedded MR model-based optimization procedure. We demonstrated the performance of DOPAMINE in brain T map reconstruction with a variable flip angle (VFA) model. To evaluate the performance of DOPAMINE, we compared it with conventional parallel imaging, low-rank based reconstruction, model-based reconstruction, and state-of-the-art deep-learning-based mapping methods for three different reduction factors (R = 3, 5, and 7) and two different sampling patterns (1D Cartesian and 2D Poisson-disk). Quantitative metrics indicated that DOPAMINE outperformed other methods in reconstructing T maps for all sampling patterns and reduction factors. DOPAMINE exhibited quantitatively and qualitatively superior performance to that of conventional methods in reconstructing MR parameter maps from undersampled multi-channel k-space data. The proposed method can thus reduce the scan time of quantitative MR parameter mapping that uses a VFA model.

摘要

定量组织特征可以通过磁共振成像(MRI)中的磁共振(MR)参数图来表示;然而,为了获取这些特征,需要较长的扫描时间,这使得定量 MR 参数映射无法应用于实际的临床协议。为了实现快速的 MR 参数映射,我们提出了一种称为 DOPAMINE 的基于深度学习的 MR 参数映射网络,它结合了深度学习网络和基于模型的方法,从欠采样的多通道 k 空间数据中重建 MR 参数图。DOPAMINE 由两个网络组成:1)MR 参数映射网络,它使用深度卷积神经网络(CNN)从欠采样的 k 空间数据中估计初始参数图(基于 CNN 的映射);2)重建网络,它使用深度 CNN 去除参数图中的混叠伪影(基于 CNN 的重建)和通过嵌入式基于模型的优化过程的交错数据一致性层。我们在具有可变翻转角(VFA)模型的脑 T 映射重建中展示了 DOPAMINE 的性能。为了评估 DOPAMINE 的性能,我们将其与传统的并行成像、基于低秩的重建、基于模型的重建以及最先进的基于深度学习的映射方法进行了比较,对于三种不同的降采率(R=3、5 和 7)和两种不同的采样模式(1D 笛卡尔和 2D 泊松圆盘)。定量指标表明,对于所有的采样模式和降采率,DOPAMINE 在重建 T 图方面都优于其他方法。与传统方法相比,DOPAMINE 在从欠采样的多通道 k 空间数据中重建 MR 参数图方面具有更好的定性和定量性能。因此,该方法可以减少使用 VFA 模型的定量 MR 参数映射的扫描时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验