Suppr超能文献

单细胞RNA测序鉴定出与年龄相关性黄斑变性相关的自然杀伤细胞相关转录因子。

Single-cell RNA Sequencing Identifies Natural Kill Cell-Related Transcription Factors Associated With Age-Related Macular Degeneration.

作者信息

Luo Yili, Liu Jianpeng, Feng Wangqiang, Lin Da, Chen Mengji, Zheng Haihua

机构信息

Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

Evol Bioinform Online. 2024 Aug 14;20:11769343241272413. doi: 10.1177/11769343241272413. eCollection 2024.

Abstract

BACKGROUND

Age-related Macular Degeneration (AMD) poses a growing global health concern as the leading cause of central vision loss in elderly people.

OBJECTION

This study focuses on unraveling the intricate involvement of Natural Killer (NK) cells in AMD, shedding light on their immune responses and cytokine regulatory roles.

METHODS

Transcriptomic data from the Gene Expression Omnibus database were utilized, employing single-cell RNA-seq analysis. High-dimensional weighted gene co-expression network analysis (hdWGCNA) and single-cell regulatory network inference and clustering (SCENIC) analysis were applied to reveal the regulatory mechanisms of NK cells in early-stage AMD patients. Machine learning models, such as random forests and decision trees, were employed to screen hub genes and key transcription factors (TFs) associated with AMD.

RESULTS

Distinct cell clusters were identified in the present study, especially the T/NK cluster, with a notable increase in NK cell abundance observed in AMD. Cell-cell communication analyses revealed altered interactions, particularly in NK cells, indicating their potential role in AMD pathogenesis. HdWGCNA highlighted the turquoise module, enriched in inflammation-related pathways, as significantly associated with AMD in NK cells. The SCENIC analysis identified key TFs in NK cell regulatory networks. The integration of hub genes and TFs identified , and as potential predictors for AMD through machine learning.

CONCLUSION

This comprehensive approach enhances our understanding of NK cell dynamics, signaling alterations, and potential predictive models for AMD. The identified TFs provide new avenues for molecular interventions and highlight the intricate relationship between NK cells and AMD pathogenesis. Overall, this study contributes valuable insights for advancing our understanding and management of AMD.

摘要

背景

年龄相关性黄斑变性(AMD)作为老年人中心视力丧失的主要原因,在全球范围内引起了越来越多的健康关注。

目的

本研究旨在揭示自然杀伤(NK)细胞在AMD中的复杂作用,阐明其免疫反应和细胞因子调节作用。

方法

利用基因表达综合数据库中的转录组数据,采用单细胞RNA测序分析。应用高维加权基因共表达网络分析(hdWGCNA)和单细胞调控网络推断与聚类(SCENIC)分析,以揭示早期AMD患者中NK细胞的调控机制。采用随机森林和决策树等机器学习模型筛选与AMD相关的枢纽基因和关键转录因子(TFs)。

结果

在本研究中鉴定出了不同的细胞簇,特别是T/NK簇,在AMD中观察到NK细胞丰度显著增加。细胞间通讯分析揭示了相互作用的改变,特别是在NK细胞中,表明它们在AMD发病机制中的潜在作用。hdWGCNA突出了富含炎症相关途径的绿松石模块,该模块与NK细胞中的AMD显著相关。SCENIC分析确定了NK细胞调控网络中的关键TFs。通过机器学习将枢纽基因和TFs整合,确定了 和 作为AMD的潜在预测指标。

结论

这种综合方法增强了我们对NK细胞动态、信号改变以及AMD潜在预测模型的理解。所鉴定的TFs为分子干预提供了新途径,并突出了NK细胞与AMD发病机制之间的复杂关系。总体而言,本研究为推进我们对AMD的理解和管理提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c9a/11325330/bb3c3c07b874/10.1177_11769343241272413-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验