Han Daoxin, He Xiaoli
Department of Ophthalmology, Nanshi Hospital of Nanyang, Henan Province, China.
The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
Heliyon. 2023 Jun 17;9(7):e16981. doi: 10.1016/j.heliyon.2023.e16981. eCollection 2023 Jul.
Age-related macular degeneration (AMD) is a significant cause of blindness, initially characterized by the accumulation of sub-Retinal pigment epithelium (RPE) deposits, leading to progressive retinal degeneration and, eventually, irreversible vision loss. This study aimed to elucidate the differential expression of transcriptomic information in AMD and normal human RPE choroidal donor eyes and to investigate whether it could be used as a biomarker for AMD.
RPE choroidal tissue samples (46 Normal samples, 38 AMD samples) were obtained from the GEO (GSE29801) database and screened for differentially expressed genes in normal and AMD patients using GEO2R and R to compare the degree of enrichment of differentially expressed genes in the GO, KEGG pathway. Firstly, we used machine learning models (LASSO, SVM algorithm) to screen disease signature genes and compare the differences between these signature genes in GSVA and immune cell infiltration. Secondly, we also performed a cluster analysis to classify AMD patients. We selected the best classification by weighted gene co-expression network analysis (WGCNA) to screen the key modules and modular genes with the strongest association with AMD. Based on the module genes, four machine models, RF, SVM, XGB, and GLM, were constructed to screen the predictive genes and further construct the AMD clinical prediction model. The accuracy of the column line graphs was evaluated using decision and calibration curves.
Firstly, we identified 15 disease signature genes by lasso and SVM algorithms, which were associated with abnormal glucose metabolism and immune cell infiltration. Secondly, we identified 52 modular signature genes by WGCNA analysis. We found that SVM was the optimal machine learning model for AMD and constructed a clinical prediction model for AMD consisting of 5 predictive genes.
We constructed a disease signature genome model and an AMD clinical prediction model by LASSO, WGCNA, and four machine models. The disease signature genes are of great reference significance for AMD etiology research. At the same time, the AMD clinical prediction model provides a reference for early clinical detection of AMD and even becomes a future census tool. In conclusion, our discovery of disease signature genes and AMD clinical prediction models may become promising new targets for the targeted treatment of AMD.
年龄相关性黄斑变性(AMD)是导致失明的一个重要原因,最初表现为视网膜色素上皮(RPE)下沉积物的积累,导致视网膜进行性变性,最终导致不可逆的视力丧失。本研究旨在阐明AMD与正常人RPE脉络膜供体眼中转录组信息的差异表达,并研究其是否可作为AMD的生物标志物。
从GEO(GSE29801)数据库中获取RPE脉络膜组织样本(46个正常样本,38个AMD样本),使用GEO2R和R筛选正常人和AMD患者中差异表达的基因,以比较差异表达基因在GO、KEGG通路中的富集程度。首先,我们使用机器学习模型(LASSO、支持向量机算法)筛选疾病特征基因,并比较这些特征基因在基因集变异分析(GSVA)和免疫细胞浸润方面的差异。其次,我们还进行了聚类分析以对AMD患者进行分类。我们通过加权基因共表达网络分析(WGCNA)选择最佳分类,以筛选与AMD关联最强的关键模块和模块基因。基于模块基因,构建了随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGB)和广义线性模型(GLM)四种机器学习模型来筛选预测基因,并进一步构建AMD临床预测模型。使用决策曲线和校准曲线评估柱状线图的准确性。
首先,我们通过LASSO和支持向量机算法鉴定出15个疾病特征基因,这些基因与葡萄糖代谢异常和免疫细胞浸润有关。其次,我们通过WGCNA分析鉴定出52个模块特征基因。我们发现支持向量机是用于AMD的最佳机器学习模型,并构建了一个由5个预测基因组成的AMD临床预测模型。
我们通过LASSO、WGCNA和四种机器学习模型构建了疾病特征基因组模型和AMD临床预测模型。疾病特征基因对AMD病因学研究具有重要参考意义。同时,AMD临床预测模型为AMD的早期临床检测提供了参考,甚至可能成为未来的普查工具。总之,我们发现的疾病特征基因和AMD临床预测模型可能成为AMD靶向治疗的有前景的新靶点。