Suppr超能文献

基于生物信息学分析构建细胞衰老相关的年龄相关性黄斑变性诊断模型,并鉴定相关疾病亚型以指导治疗。

Bioinformatics analysis for constructing a cellular senescence-related age-related macular degeneration diagnostic model and identifying relevant disease subtypes to guide treatment.

机构信息

Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.

出版信息

Aging (Albany NY). 2024 May 10;16(9):8044-8069. doi: 10.18632/aging.205804.

Abstract

Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which cellular senescence leads to AMD remains unclear. Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and miRNAs. We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death (PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic mechanisms and therapeutic targets. In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, revealing their differential roles in programmed cell death, disease progression, and immune microenvironments within AMD.

摘要

年龄相关性黄斑变性(AMD)是一种导致中心视力进行性丧失的疾病。越来越多的证据表明,细胞衰老与 AMD 之间存在关联。然而,细胞衰老导致 AMD的确切机制尚不清楚。我们采用机器学习建立了 AMD 的诊断模型。通过无监督聚类,确定了两种不同的 AMD 亚型。GO、KEGG 和 GSVA 分析探讨了与两种亚型相关的不同生物学功能。通过 WGCNA,我们构建了亚型间差异基因的共表达网络,揭示了转录因子和 miRNA 水平上的关键基因的调控作用。我们发现了 5 个与炎症相关的基因,用于构建 AMD 的诊断模型。此外,我们观察到 B 型的细胞衰老水平和与程序性细胞死亡(PCD)相关的途径(如铁死亡、坏死性凋亡和细胞焦亡)的表达水平高于 A 型。免疫微环境在亚型之间也存在差异,表明可能存在不同的发病机制和治疗靶点。总之,我们通过利用与细胞衰老相关的基因表达,开发了一种 AMD 的诊断模型。此外,我们确定了两种具有不同衰老基因表达模式的亚型,揭示了它们在程序性细胞死亡、疾病进展和 AMD 免疫微环境中的不同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcba/11131993/4ed4af803720/aging-16-205804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验