Kandula Arun Kumar Reddy, Phamornratanakun Tanakit, Gomez Angello Huerta, El-Mokahal Marcel, Ma Zhen, Feng Yunhe, Yang Huaxiao
Department of Biomedical Engineering, University of North Texas, Denton TX, USA.
Department of Computer Science & Engineering, University of North Texas, Denton TX, USA.
bioRxiv. 2024 Aug 8:2024.01.15.575724. doi: 10.1101/2024.01.15.575724.
Human pluripotent stem cell (hPSC)-derived cardiac organoid is the most recent three-dimensional tissue structure that mimics the structure and functionality of the human heart and plays a pivotal role in modeling heart development and disease. The hPSC-derived cardiac organoids are commonly characterized by bright-field microscopic imaging for tracking daily organoid differentiation and morphology formation. Although the brightfield microscope provides essential information about hPSC-derived cardiac organoids, such as morphology, size, and general structure, it does not extend our understanding of cardiac organoids on cell type-specific distribution and structure. Then, fluorescence microscopic imaging is required to identify the specific cardiovascular cell types in the hPSC-derived cardiac organoids by fluorescence immunostaining fixed organoid samples or fluorescence reporter imaging of live organoids. Both approaches require extra steps of experiments and techniques and do not provide general information on hPSC-derived cardiac organoids from different batches of differentiation and characterization, which limits the biomedical applications of hPSC-derived cardiac organoids. This research addresses this limitation by proposing a comprehensive workflow for colorizing phase contrast images of cardiac organoids from brightfield microscopic imaging using conditional Generative Adversarial Networks (GANs) to provide cardiovascular cell type-specific information in hPSC-derived cardiac organoids. By infusing these phase contrast images with accurate fluorescence colorization, our approach aims to unlock the hidden wealth of cell type, structure, and further quantifications of fluorescence intensity and area, for better characterizing hPSC-derived cardiac organoids.
人多能干细胞(hPSC)来源的心脏类器官是一种最新的三维组织结构,它模拟人类心脏的结构和功能,在心脏发育和疾病建模中发挥着关键作用。hPSC来源的心脏类器官通常通过明场显微镜成像来表征,以追踪类器官的日常分化和形态形成。尽管明场显微镜提供了有关hPSC来源的心脏类器官的基本信息,如形态、大小和总体结构,但它并未扩展我们对心脏类器官细胞类型特异性分布和结构的理解。因此,需要荧光显微镜成像来通过对固定类器官样本进行荧光免疫染色或对活类器官进行荧光报告基因成像来识别hPSC来源的心脏类器官中的特定心血管细胞类型。这两种方法都需要额外的实验步骤和技术,并且无法提供来自不同批次分化和表征的hPSC来源的心脏类器官的一般信息,这限制了hPSC来源的心脏类器官的生物医学应用。本研究通过提出一种综合工作流程来解决这一限制,该流程使用条件生成对抗网络(GANs)对明场显微镜成像的心脏类器官的相差图像进行着色,以提供hPSC来源的心脏类器官中特定心血管细胞类型的信息。通过为这些相差图像注入准确的荧光着色,我们的方法旨在解锁隐藏的细胞类型、结构以及荧光强度和面积的进一步量化信息,以便更好地表征hPSC来源的心脏类器官。