Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain.
ICREA: Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
Protein Sci. 2024 Sep;33(9):e5136. doi: 10.1002/pro.5136.
Crystallography at low resolution must determine the atomic model from less experimental observations, which is challenging in the absence of a model. In addition, model bias is more severe when independent experimental data are scarce. Our methods solve the phase problem by combining the location of accurate model fragments using Phaser with density modification and interpretation of the resulting maps using SHELXE. From a partial, correct structure, the density modification process and the stereochemical constraints draw the rest of the structure, validating the result. This same principle is now exploited at low resolution. Coiled coils are important, ubiquitous structures but notoriously difficult to phase and to predict. Both correct solutions and incorrect ones are poorly discriminated by the crystallographic figures of merit as long as helices are correctly oriented. We incorporate coiled-coil verification, designed to set up competing, incompatible structural hypotheses to probe both the results and establish the power of the data to discriminate them. Efficiency of coiled-coil phasing and validation in test cases from 3 to 4 Å is demonstrated in ARCIMBOLDO_LITE, placing single helices, and in ARCIMBOLDO_SHREDDER, with fragments derived from AlphaFold models. SHELXE tracing at low resolution has been enhanced, maintaining its local character but extending the environment assessment. For non-helical structures, verification is demonstrated in the fragment location process. Its use is exemplified with the solution of the VSR1 structure at 3.5 Å, depending on LLG optimization and the emergence of new features in the electron density. Relying on verification, we have extended the use of the ARCIMBOLDO software to low resolution.
在低分辨率下的晶体学必须从较少的实验观测中确定原子模型,这在没有模型的情况下具有挑战性。此外,当独立的实验数据稀缺时,模型偏差更加严重。我们的方法通过结合 Phaser 中准确模型片段的位置以及使用 SHELXE 对所得图谱的密度修正和解释来解决相位问题。从部分正确的结构开始,密度修正过程和立体化学约束会得出结构的其余部分,从而验证结果。现在同样的原理也被应用于低分辨率。卷曲螺旋是重要的、普遍存在的结构,但众所周知难以进行相位和预测。只要螺旋正确定向,正确的和错误的解决方案都很难被晶体学质量标准区分开来。我们结合了卷曲螺旋验证,旨在建立相互竞争的、不兼容的结构假设,以探测结果并确定数据区分它们的能力。在 ARCIMBOLDO_LITE 中,从 3 到 4 Å 的测试案例中展示了卷曲螺旋相位和验证的效率,放置了单链,并在 ARCIMBOLDO_SHREDDER 中,使用来自 AlphaFold 模型的片段。在低分辨率下的 SHELXE 追踪得到了增强,保持了其局部特征,但扩展了环境评估。对于非螺旋结构,在片段定位过程中进行了验证。在解决 3.5 Å 的 VSR1 结构时,我们展示了其用途,这取决于 LLG 优化和电子密度中出现的新特征。依靠验证,我们已经将 ARCIMBOLDO 软件的用途扩展到了低分辨率。