Suppr超能文献

利用水竞争驱动酶串扰。

Harnessing Water Competition to Drive Enzyme Crosstalk.

机构信息

Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada.

Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada.

出版信息

Biomacromolecules. 2024 Sep 9;25(9):6072-6081. doi: 10.1021/acs.biomac.4c00727. Epub 2024 Aug 16.

Abstract

In nature, enzymatic pathways often involve compartmentalization effects that can modify the intrinsic activity and specificity of the different enzymes involved. Consequently, extensive research has focused on replicating and studying the compartmentalization effects on individual enzymes and on multistep enzyme "cascade" reactions. This study explores the influence of compartmentalization achieved using molecular crowding on the glucose oxidase/horseradish peroxidase (GOx/HRP) cascade reaction. The crowder tested is methoxy poly(ethylene glycol) (mPEG) that can, depending on conditions, promote GOx and HRP coassociation at the nanoscale and extend their contact time. Low-molecular-weight mPEG (0.35 kDa), but not mPEG of higher molecular weights (5 or 20 kDa), significantly enhanced the cascade reaction where up to a 20-fold increase in the rate of the cascade reaction was observed under some conditions. The combined analyses emphasize the particularity of low-molecular-weight mPEG and point toward mPEG-induced coassociation of HRP and GOx, producing nearest crowded neighbor effects of HRP on GOx, and . These altered the nanoscale environments of these enzymes, which influenced substrate affinity. Using mPEG to promote protein coassociation is simple and does not chemically modify the proteins studied. This approach could be of interest for more broadly characterizing nearest crowded neighbor effects (i.e., protein-protein interactions) for multiprotein systems (i.e., more than just two), thus making it an interesting tool for studying very complex systems, such as those found in nature.

摘要

在自然界中,酶促途径通常涉及区室化效应,这可以改变所涉及的不同酶的固有活性和特异性。因此,大量的研究集中在复制和研究单个酶和多步酶“级联”反应的区室化效应上。本研究探讨了使用分子拥挤实现的区室化对葡萄糖氧化酶/辣根过氧化物酶(GOx/HRP)级联反应的影响。测试的拥挤剂是甲氧基聚乙二醇(mPEG),它可以根据条件促进 GOx 和 HRP 在纳米尺度上的共缔合,并延长它们的接触时间。低分子量 mPEG(0.35 kDa),而不是高分子量 mPEG(5 或 20 kDa),显著增强了级联反应,在某些条件下,级联反应的速率提高了 20 倍。综合分析强调了低分子量 mPEG 的特殊性,并指出 mPEG 诱导 HRP 和 GOx 的共缔合,产生 HRP 对 GOx 的最接近拥挤邻居效应,从而改变了这些酶的纳米级环境,影响了底物亲和力。使用 mPEG 促进蛋白质共缔合简单且不会化学修饰所研究的蛋白质。这种方法可能对更广泛地表征多蛋白系统(即不仅仅是两个)的最接近拥挤邻居效应(即蛋白质-蛋白质相互作用)感兴趣,从而使其成为研究非常复杂系统(例如自然界中发现的系统)的有趣工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验