Soriano-Díaz S, Ramírez-Muñoz D, García-Gil R, Cardoso S, Freitas P P
Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, 46100 Burjassot, Spain.
INESC Microsystems and Nanotechnologies (INESC-MN), R. Alves Redol 9, Lisbon 1000-029, Portugal and Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
Rev Sci Instrum. 2024 Aug 1;95(8). doi: 10.1063/5.0205541.
This work shows how the tunnel-effect based magnetoresistance (TMR) technology can be used as a competitive sensing method in electrical current and power processors. The sensor is arranged in a Wheatstone bridge topology, and each magnetoresistance was composed of a series connection of 360 magnetic tunnel junction elements with the following structure (thickness in nm): 100 SiO2/5 Ta/15 Ru/5 Ta/15 Ru/5 Ta/5 Ru/20 IrMn/2 CoFe30/0.85 Ru/2.6 CoFe40B20/1.2 MgO/2 CoFe40B20/0.21 Ta/4 NiFe/0.20 Ru/6 IrMn/2 Ru/5 Ta/10 Ru. First, the electrical and thermal characteristics of the sensor were evaluated by analyzing its response to DC current sweeps at various temperatures, controlled using a climatic chamber. Nominal values of current sensitivity S (0.324 mV/A), bridge output offset voltage Vo,s,o (-37.1 mV), bridge input resistance Rinp,bridge (0.958 kΩ), and their thermal behavior were obtained (0.0036 mV/A°C, 0.079 mV/°C, and -0.31 Ω/°C). Second, an instrumentation system is introduced to characterize the sensor, measuring its sensitivity to AC line currents from the mains up to 10 Arms. Finally, an electronic wattmeter was developed showing the relevant quantities of its design. The circuit is able to interface a TMR Wheatstone bridge to an analog processor. Power and current measurements were obtained from a 150 Vrms AC mains 1.5 kW load with resistive and capacitive components, achieving less than 1% deviation over the expected values. The circuit shown can be used to interface these signals to more complex smart digital engines with active or reactive energy processing capabilities, while providing inherent high voltage isolation, thanks to its TMR measurement technology.
这项工作展示了基于隧道效应的磁阻(TMR)技术如何能作为一种在电流和功率处理器中具有竞争力的传感方法。该传感器采用惠斯通电桥拓扑结构布置,每个磁阻由360个具有以下结构(厚度单位为纳米)的磁性隧道结元件串联组成:100 SiO₂/5 Ta/15 Ru/5 Ta/15 Ru/5 Ta/5 Ru/20 IrMn/2 CoFe30/0.85 Ru/2.6 CoFe40B20/1.2 MgO/2 CoFe40B20/0.21 Ta/4 NiFe/0.20 Ru/6 IrMn/2 Ru/5 Ta/10 Ru。首先,通过分析传感器在不同温度下对直流电流扫描的响应来评估其电学和热学特性,温度由气候箱控制。获得了电流灵敏度S(0.324 mV/A)、电桥输出偏移电压Vo,s,o(-37.1 mV)、电桥输入电阻Rinp,bridge(0.958 kΩ)的标称值及其热学行为(0.0036 mV/A°C、0.079 mV/°C和 -0.31 Ω/°C)。其次,引入一个仪器系统来表征该传感器,测量其对高达10 Arms的市电交流线路电流的灵敏度。最后,开发了一个电子瓦特计,展示了其设计的相关量。该电路能够将一个TMR惠斯通电桥与一个模拟处理器相连接。功率和电流测量是从一个带有电阻性和电容性元件的150 Vrms交流市电1.5 kW负载上获得的,与预期值的偏差小于1%。所示电路可用于将这些信号与具有有功或无功能量处理能力的更复杂的智能数字引擎相连接,同时由于其TMR测量技术而提供固有的高电压隔离。