Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires 1428, Argentina.
Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2405632121. doi: 10.1073/pnas.2405632121. Epub 2024 Aug 16.
Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant , APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.
真核生物蛋白编码基因的转录生成不成熟的 mRNA,这些 mRNA 要经历一系列加工事件,包括加帽、剪接、切割和多聚腺苷酸化(CPA)以及碱基的化学修饰。可变多聚腺苷酸化(APA)极大地促进了细胞中 mRNA 的多样性。通过确定 3'非翻译区的长度,APA 生成具有不同调节元件的转录本,如 miRNA 和 RBP 结合位点,这些调节元件可以影响 mRNA 的稳定性、周转率和翻译。在模式植物中,APA 参与了种子休眠和开花的调控。鉴于 APA 在植物中的生理重要性,我们决定研究光照/黑暗条件的影响,并比较其潜在机制与已阐明的可变剪接(AS)机制。我们发现,光照大约控制着 30%基因的 APA。与 AS 相似,光照对 APA 的影响需要功能正常的叶绿体,不受光受体色素和隐花色素突变体的影响,并且只有在与光合作用组织的通讯没有中断时,在根中才会观察到这种影响。此外,线粒体和 TOR 激酶活性是光照效应所必需的。然而,与 AS 不同的是,与转录延伸的偶联似乎并不涉及,因为依赖于光照的 APA 调节既不会在 TFIIS 转录延伸因子的突变体中被消除,也不会普遍受到组蛋白去乙酰化酶抑制引起的染色质松弛的影响。相反,这种调节似乎与组成性 CPA 因子的丰度变化相关,这也是由叶绿体介导的。