文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

检测肿瘤微环境中的细胞类型和密度可改善乳腺癌的预后风险评估。

Detecting cell types and densities in the tumor microenvironment improves prognostic risk assessment for breast cancer.

作者信息

Liu Pu, Zhang Xueli, Wang Wenwen, Zhu Yunping, Xie Yongfang, Tai Yanhong, Ma Jie

机构信息

Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

Department of Pathology, the Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China.

出版信息

Biomol Biomed. 2024 Dec 11;25(1):106-114. doi: 10.17305/bb.2024.10974.


DOI:10.17305/bb.2024.10974
PMID:39151110
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11647253/
Abstract

A comprehensive evaluation of the relationship between the densities of various cell types in the breast cancer tumor microenvironment and patient prognosis is currently lacking. Additionally, the absence of a large patch-level whole slide imaging (WSI) dataset of breast cancer with annotated cell types hinders the ability of artificial intelligence to evaluate cell density in breast cancer WSI. We first employed Lasso-Cox regression to build a breast cancer prognosis assessment model based on cell density in a population study. Pathology experts manually annotated a dataset containing over 70,000 patches and used transfer learning based on ResNet152 to develop an artificial intelligence model for identifying different cell types in these patches. The results showed that significant prognostic differences were observed among breast cancer patients stratified by cell density score (P = 0.0018), with the cell density score identified as an independent prognostic factor for breast cancer patients (P < 0.05). In the validation cohort, the predictive performance for overall survival (OS) was satisfactory, with area under the curve (AUC) values of 0.893 (OS) at 1-year, 0.823 (OS) at 3-year, and 0.861 (OS) at 5-year intervals. We trained a robust model based on ResNet152, achieving over 99% classification accuracy for different cell types in patches. These achievements offer new public resources and tools for personalized treatment and prognosis assessment.

摘要

目前缺乏对乳腺癌肿瘤微环境中各种细胞类型密度与患者预后之间关系的全面评估。此外,缺乏一个带有注释细胞类型的乳腺癌大补丁级全切片成像(WSI)数据集,这阻碍了人工智能评估乳腺癌WSI中细胞密度的能力。我们首先在一项人群研究中采用套索-考克斯回归,基于细胞密度建立了乳腺癌预后评估模型。病理学专家手动注释了一个包含超过70000个补丁的数据集,并使用基于ResNet152的迁移学习开发了一个用于识别这些补丁中不同细胞类型的人工智能模型。结果表明,根据细胞密度评分分层的乳腺癌患者之间观察到显著的预后差异(P = 0.0018),细胞密度评分被确定为乳腺癌患者的独立预后因素(P < 0.05)。在验证队列中,对总生存期(OS)的预测性能令人满意,1年时曲线下面积(AUC)值为0.893(OS),3年时为0.823(OS),5年时为0.861(OS)。我们基于ResNet152训练了一个强大的模型,对补丁中不同细胞类型的分类准确率超过99%。这些成果为个性化治疗和预后评估提供了新的公共资源和工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/cb00530ae4c4/bb-2024-10974f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/ea272854671b/bb-2024-10974f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/e7b1a5578198/bb-2024-10974f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/d0cfcfd225e8/bb-2024-10974f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/cb00530ae4c4/bb-2024-10974f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/ea272854671b/bb-2024-10974f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/e7b1a5578198/bb-2024-10974f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/d0cfcfd225e8/bb-2024-10974f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/11647253/cb00530ae4c4/bb-2024-10974f4.jpg

相似文献

[1]
Detecting cell types and densities in the tumor microenvironment improves prognostic risk assessment for breast cancer.

Biomol Biomed. 2024-12-11

[2]
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.

EBioMedicine. 2020-11

[3]
Identifying subtypes and developing prognostic models based on N6-methyladenosine and immune microenvironment related genes in breast cancer.

Sci Rep. 2024-7-18

[4]
Construction of immune score and its prognostic value in invasive lobular carcinoma of the breast using computational pathology analysis.

Cancer Med. 2024-1

[5]
Identification of Novel Anoikis-Related Gene Signatures to Predict the Prognosis, Immune Microenvironment, and Drug Sensitivity of Breast Cancer Patients.

Cancer Control. 2024

[6]
Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics.

Breast. 2021-4

[7]
Prognostic value of tumour-infiltrating lymphocytes based on the evaluation of frequency in patients with oestrogen receptor-positive breast cancer.

Eur J Cancer. 2021-9

[8]
Identification of the optimal candidates to benefit from surgery and chemotherapy among elderly female breast cancer patients with bone metastases.

Sci Rep. 2025-2-8

[9]
Development of metastasis and survival prediction model of luminal and non-luminal breast cancer with weakly supervised learning based on pathomics.

PeerJ. 2025-1-21

[10]
Characterization of novel sialylation-associated microRNA signature for prognostic assessment in breast cancer and its implications for the tumor microenvironment.

J Steroid Biochem Mol Biol. 2025-4

本文引用的文献

[1]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[2]
Multi-Scale Digital Pathology Patch-Level Prostate Cancer Grading Using Deep Learning: Use Case Evaluation of DiagSet Dataset.

Bioengineering (Basel). 2024-6-18

[3]
Unlocking the crucial role of cancer-associated fibroblasts in tumor metastasis: Mechanisms and therapeutic prospects.

J Adv Res. 2025-5

[4]
Managing sexual health challenges in breast cancer survivors: A comprehensive review.

Breast. 2024-8

[5]
Targeting senescent cells to reshape the tumor microenvironment and improve anticancer efficacy.

Semin Cancer Biol. 2024-6

[6]
Overall Survival and Prognostic Factors in Metastatic Triple-Negative Breast Cancer: A National Cancer Database Analysis.

Cancers (Basel). 2024-5-8

[7]
Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity.

Breast Cancer Res. 2024-5-14

[8]
Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review.

J Pathol Inform. 2024-2-1

[9]
Applications of AI in multi-modal imaging for cardiovascular disease.

Front Radiol. 2024-1-12

[10]
Preliminary fatty liver disease grading using general-purpose online large language models: ChatGPT-4 or Bard?

J Hepatol. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索