文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能量化肿瘤间质比是可切除结直肠癌患者总生存的独立预测因子。

Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.

机构信息

School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China.

Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China.

出版信息

EBioMedicine. 2020 Nov;61:103054. doi: 10.1016/j.ebiom.2020.103054. Epub 2020 Oct 8.


DOI:10.1016/j.ebiom.2020.103054
PMID:33039706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7648125/
Abstract

BACKGROUND: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification. METHODS: We trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS). FINDINGS: The CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability. INTERPRETATION: We developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making. FUNDING: National Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China.

摘要

背景:人工智能方法可以加速肿瘤基质比(TSR)的临床应用,TSR 在结直肠癌(CRC)中具有预后相关性。因此,我们开发了一种深度学习模型,用于对常规苏木精和伊红(HE)染色全切片图像(WSI)进行全自动 TSR 定量,并进一步研究其对患者分层的预后有效性。

方法:我们使用迁移学习训练了一个卷积神经网络(CNN)模型,其九类组织分类性能在两个独立的测试集中进行了评估。使用该模型对 WSI HE 幻灯片进行了斑块级分割,随后得出 TSR。发现(N=499)和验证队列(N=315)用于评估 TSR 对总生存(OS)的预后价值。

结果:CNN 定量的 TSR 是一个预后因素,独立于其他临床病理特征,高基质与发现队列(HR 1.72,95%CI 1.24-2.37,P=0.001)和验证队列(2.08,1.26-3.42,0.004)中降低 OS 相关。将 TSR 整合到包含其他危险因素的 Cox 模型中显示出改善的预后能力。

解释:我们开发了一种基于 CRC 组织学 WSI 的深度学习模型来定量 TSR,并在两个独立的 CRC 患者队列中证明了其对 OS 患者分层的预后有效性。这种全自动方法允许客观和标准化的应用,同时减少病理学家的工作量。因此,它有可能在临床预后预测和决策制定中提供重要帮助。

资金:国家重点研发计划、国家杰出青年科学基金和国家自然科学基金青年科学基金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/da8677fc8e1a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/7e537105254d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/0df8c837e1ad/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/c23ea8122abb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/7e9c3c0c6434/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/da8677fc8e1a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/7e537105254d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/0df8c837e1ad/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/c23ea8122abb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/7e9c3c0c6434/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/7648125/da8677fc8e1a/gr5.jpg

相似文献

[1]
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.

EBioMedicine. 2020-11

[2]
Digital image analysis provides robust tissue microenvironment-based prognosticators in patients with stage I-IV colorectal cancer.

Hum Pathol. 2022-10

[3]
Impact of tumour stroma-immune interactions on survival prognosis and response to neoadjuvant chemotherapy in bladder cancer.

EBioMedicine. 2024-6

[4]
Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer.

Cell Oncol (Dordr). 2019-3-1

[5]
The Crohn's-like lymphoid reaction density: a new artificial intelligence quantified prognostic immune index in colon cancer.

Cancer Immunol Immunother. 2022-5

[6]
Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer.

Int J Mol Sci. 2023-2-1

[7]
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.

PLoS Med. 2019-1-24

[8]
The role of artificial intelligence to quantify the tumour-stroma ratio for survival in colorectal cancer.

EBioMedicine. 2020-11

[9]
Prognostic significance of the tumor-stroma ratio in gallbladder cancer.

Neoplasma. 2017

[10]
The prognostic significance of tumour-stroma ratio in endometrial carcinoma.

BMC Cancer. 2015-12-16

引用本文的文献

[1]
Cell type prediction with neighborhood-enhanced cellular embedding using deep learning on hematoxylin and eosin-stained images.

Comput Struct Biotechnol J. 2025-7-15

[2]
Automated tumor-stroma ratio estimation for improved prognostic stratification of squamous cell carcinoma of the oral tongue.

J Pathol Clin Res. 2025-7

[3]
Pathomics in Gastrointestinal Tumors: Research Progress and Clinical Applications.

Cureus. 2025-5-29

[4]
Visualized hysteroscopic artificial intelligence fertility assessment system for endometrial injury: an image-deep-learning study.

Ann Med. 2025-12

[5]
Advancements in the application of artificial intelligence in the field of colorectal cancer.

Front Oncol. 2025-2-25

[6]
Tumor‑stroma ratio as a clinical prognostic factor in colorectal carcinoma: A meta‑analysis of 7,934 patients.

Oncol Lett. 2025-2-19

[7]
Deep-learning enabled combined measurement of tumour cell density and tumour infiltrating lymphocyte density as a prognostic biomarker in colorectal cancer.

BJC Rep. 2025-3-3

[8]
AI-based tumor-stroma ratio quantification algorithm: comprehensive evaluation of prognostic role in primary colorectal cancer.

Virchows Arch. 2025-2-13

[9]
Automatic ovarian follicle detection using object detection models.

Sci Rep. 2024-12-30

[10]
Artificial intelligence (AI) for tumor microenvironment (TME) and tumor budding (TB) identification in colorectal cancer (CRC) patients: A systematic review.

J Pathol Inform. 2023-11-22

本文引用的文献

[1]
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.

Nat Med. 2019-6-3

[2]
Artificial intelligence in healthcare.

Nat Biomed Eng. 2018-10-10

[3]
Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer.

BMC Cancer. 2019-3-29

[4]
Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer.

Cell Oncol (Dordr). 2019-3-1

[5]
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.

PLoS Med. 2019-1-24

[6]
Scoring the tumor-stroma ratio in colon cancer: procedure and recommendations.

Virchows Arch. 2018-7-20

[7]
The tumour-stroma ratio in colon cancer: the biological role and its prognostic impact.

Histopathology. 2018-3-24

[8]
Association of Omics Features with Histopathology Patterns in Lung Adenocarcinoma.

Cell Syst. 2017-11-15

[9]
Tumor-stroma ratio predicts recurrence in patients with colon cancer treated with neoadjuvant chemotherapy.

Acta Oncol. 2017-10-5

[10]
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA. 2016-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索