School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China.
Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China.
EBioMedicine. 2020 Nov;61:103054. doi: 10.1016/j.ebiom.2020.103054. Epub 2020 Oct 8.
BACKGROUND: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification. METHODS: We trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS). FINDINGS: The CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability. INTERPRETATION: We developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making. FUNDING: National Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China.
背景:人工智能方法可以加速肿瘤基质比(TSR)的临床应用,TSR 在结直肠癌(CRC)中具有预后相关性。因此,我们开发了一种深度学习模型,用于对常规苏木精和伊红(HE)染色全切片图像(WSI)进行全自动 TSR 定量,并进一步研究其对患者分层的预后有效性。
方法:我们使用迁移学习训练了一个卷积神经网络(CNN)模型,其九类组织分类性能在两个独立的测试集中进行了评估。使用该模型对 WSI HE 幻灯片进行了斑块级分割,随后得出 TSR。发现(N=499)和验证队列(N=315)用于评估 TSR 对总生存(OS)的预后价值。
结果:CNN 定量的 TSR 是一个预后因素,独立于其他临床病理特征,高基质与发现队列(HR 1.72,95%CI 1.24-2.37,P=0.001)和验证队列(2.08,1.26-3.42,0.004)中降低 OS 相关。将 TSR 整合到包含其他危险因素的 Cox 模型中显示出改善的预后能力。
解释:我们开发了一种基于 CRC 组织学 WSI 的深度学习模型来定量 TSR,并在两个独立的 CRC 患者队列中证明了其对 OS 患者分层的预后有效性。这种全自动方法允许客观和标准化的应用,同时减少病理学家的工作量。因此,它有可能在临床预后预测和决策制定中提供重要帮助。
资金:国家重点研发计划、国家杰出青年科学基金和国家自然科学基金青年科学基金。
Cell Oncol (Dordr). 2019-3-1
Cancer Immunol Immunother. 2022-5
BMC Cancer. 2015-12-16
Comput Struct Biotechnol J. 2025-7-15
Sci Rep. 2024-12-30
Nat Biomed Eng. 2018-10-10
Cell Oncol (Dordr). 2019-3-1
Virchows Arch. 2018-7-20
Histopathology. 2018-3-24
Cell Syst. 2017-11-15