Wang Jing, Song Qiuli, Shang Yongchen, Liu Yuejie, Zhao Jingxiang
College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
Modern Experiment Center, Harbin Normal University, Harbin 150025, China.
Nanomaterials (Basel). 2025 Jul 17;15(14):1111. doi: 10.3390/nano15141111.
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol conversion on single metal atoms anchored on graphitic carbon nitride (TM/g-CN). We showed that these metal atoms stably coordinate with edge N sites of g-CN to form active catalytic centers. Screening 20 TM/g-CN candidates, we identified V/g-CN and Zn/g-CN as optimal catalysts: both exhibit low free-energy barriers (<0.50 eV) for the key CO hydrogenation steps and facilitate C-C coupling via an Eley-Rideal mechanism with a negligible kinetic barrier (~0.10 eV) to yield ethanol at low limiting potentials, which explains their superior COER performance. An analysis of d-band centers, charge transfer, and bonding-antibonding orbital distributions revealed the origin of their activity. This work provides theoretical insights and useful guidelines for designing high-performance single-atom COER catalysts.
一氧化碳的电化学还原(COER)为生成增值多碳(C)产物(如乙醇)提供了一条有前景的途径,但实现高催化性能仍然是一项重大挑战。在此,我们进行了全面的密度泛函理论(DFT)计算,以评估锚定在石墨相氮化碳(TM/g-CN)上的单金属原子上的CO到乙醇的转化。我们表明,这些金属原子与g-CN的边缘N位点稳定配位,形成活性催化中心。通过筛选20种TM/g-CN候选物,我们确定V/g-CN和Zn/g-CN为最佳催化剂:两者在关键的CO加氢步骤中均表现出低自由能垒(<0.50 eV),并通过Eley-Rideal机制促进C-C偶联,其动力学垒可忽略不计(~0.10 eV),从而在低极限电位下生成乙醇,这解释了它们优异的COER性能。对d带中心、电荷转移和键合-反键轨道分布的分析揭示了它们活性的起源。这项工作为设计高性能单原子COER催化剂提供了理论见解和有用的指导方针。