Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA.
Department of Biology, John Carroll University, University Heights, Ohio, USA.
J Phycol. 2024 Oct;60(5):1071-1089. doi: 10.1111/jpy.13491. Epub 2024 Aug 17.
The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S-23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1' Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1' Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.
全基因组测序在细菌分类学中的迅速发展揭示了深层的进化关系和物种形成信号,但组装方法常常会错过核糖体操纵子中的真实核苷酸多样性。虽然在物种水平上缺乏足够的系统发育信号,但 16S 核糖体 RNA 基因在细菌分类学中仍被广泛应用。在蓝藻分类学中,比较 16S-23S 内部转录间隔区(ITS)区域被用于填补这一信息空白。尽管 ITS rRNA 区域分析通常用于识别物种,但研究人员往往无法识别同源操纵子,这导致了不恰当的比较。尚未建立一种从同源操纵子中区分出旁系同源操纵子的方法。通过量化 ITS 中螺旋结构域中保守配对核苷酸的数量,开发了一种识别同源核糖体操纵子的新方法。D1' 指数量化了该螺旋结构中嘧啶与嘌呤配对核苷酸序列比值的差异。比较了来自 Brasilonema 的 89 株菌的 111 个操纵子序列,鉴定出了 4 种同源操纵子类型。将 D1' 指数值与螺旋长度作图,清楚地区分了同源物。在本研究中,大多数同源操纵子都观察到存在或不存在 tRNA 基因。我们假设,基因组重排而不是基因复制导致了同源物之间的变异。这种新方法将使蓝藻分类学家能够更正确地利用 ITS rRNA 区域数据,防止错误的分类假设。此外,这项工作可以帮助基因组学家识别和保护核糖体操纵子中的明显序列变异,这是原核生物进化的一个重要指标。