Suppr超能文献

一种基于CT的影像组学肿瘤质量和数量模型,用于预测结直肠癌肝转移根治性手术后的早期复发。

A CT-based radiomics tumor quality and quantity model to predict early recurrence after radical surgery for colorectal liver metastases.

作者信息

Fu Sunya, Chen Dawei, Zhang Yuqin, Yu Xiao, Han Lu, Yu Jiazi, Zheng Yupeng, Zhao Liang, Xu Yidong, Tan Ying, Yang Mian

机构信息

Department of Radiology, Ningbo Medical Center LiHuiLi Hospital, 1111 Jiangnan Road, Ningbo, 315040, People's Republic of China.

Department of Gastroenterology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, 315040, Zhejiang, People's Republic of China.

出版信息

Clin Transl Oncol. 2025 Mar;27(3):1198-1210. doi: 10.1007/s12094-024-03645-8. Epub 2024 Aug 17.

Abstract

PURPOSE

This study aimed to develop a tumor radiomics quality and quantity model (RQQM) based on preoperative enhanced CT to predict early recurrence after radical surgery for colorectal liver metastases (CRLM).

METHODS

A retrospective analysis was conducted on 282 cases from 3 centers. Clinical risk factors were examined using univariate and multivariate logistic regression (LR) to construct the clinical model. Radiomics features were extracted using the least absolute shrinkage and selection operator (LASSO) for dimensionality reduction. The LR learning algorithm was employed to construct the radiomics model, RQQM (radiomics-TBS), combined model (radiomics-clinical), clinical risk score (CRS) model and tumor burden score (TBS) model. Inter-model comparisons were made using area under the curve (AUC), decision curve analysis (DCA) and calibration curve. Log-rank tests assessed differences in disease-free survival (DFS) and overall survival (OS).

RESULTS

Clinical features screening identified CRS, KRAS/NRAS/BRAF and liver lobe distribution as risk factors. Radiomics model, RQQM, combined model demonstrated higher AUC values compared to CRS and TBS model in training, internal and external validation cohorts (Delong-test P < 0.05). RQQM outperformed the radiomics model, but was slightly inferior to the combined model. Survival curves revealed statistically significant differences in 1-year DFS and 3-year OS for the RQQM (P < 0.001).

CONCLUSIONS

RQQM integrates both "quality" (radiomics) and "quantity" (TBS). The radiomics model is superior to the TBS model and has a greater impact on patient prognosis. In the absence of clinical data, RQQM, relying solely on imaging data, shows an advantage in predicting early recurrence after radical surgery for CRLM.

摘要

目的

本研究旨在基于术前增强CT开发一种肿瘤影像组学质量和数量模型(RQQM),以预测结直肠癌肝转移(CRLM)根治性手术后的早期复发。

方法

对来自3个中心的282例患者进行回顾性分析。使用单因素和多因素逻辑回归(LR)检查临床危险因素,以构建临床模型。使用最小绝对收缩和选择算子(LASSO)提取影像组学特征以进行降维。采用LR学习算法构建影像组学模型RQQM(影像组学-TBS)、联合模型(影像组学-临床)、临床风险评分(CRS)模型和肿瘤负荷评分(TBS)模型。使用曲线下面积(AUC)、决策曲线分析(DCA)和校准曲线进行模型间比较。对数秩检验评估无病生存期(DFS)和总生存期(OS)的差异。

结果

临床特征筛查确定CRS、KRAS/NRAS/BRAF和肝叶分布为危险因素。在训练、内部和外部验证队列中,影像组学模型RQQM、联合模型的AUC值高于CRS和TBS模型(德龙检验P<0.05)。RQQM优于影像组学模型,但略逊于联合模型。生存曲线显示,RQQM的1年DFS和3年OS存在统计学显著差异(P<0.001)。

结论

RQQM整合了“质量”(影像组学)和“数量”(TBS)。影像组学模型优于TBS模型,并对患者预后有更大影响。在缺乏临床数据的情况下,仅依靠影像数据的RQQM在预测CRLM根治性手术后的早期复发方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验