Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
ACS Nano. 2024 Aug 27;18(34):23243-23252. doi: 10.1021/acsnano.4c05959. Epub 2024 Aug 17.
Nanopores have emerged as highly sensitive biosensors operating at the single-molecule level. However, the majority of nanopore experiments still rely on averaging signals from multiple molecules, introducing systematic errors. To overcome this limitation and obtain accurate information from a single molecule, the molecular ping-pong methodology provides a precise approach involving repeated captures of a single molecule. In this study, we have enhanced the molecular ping-pong technique by incorporating a customized electronic system and control algorithm, resulting in a recapture number exceeding 10,000. During the ping-pong process, we observed a significant reduction in the variance of translocation characteristics, providing fresh insights into single-molecule translocation dynamics. An inhomogeneous translocation velocity of folded DNA has been revealed, illustrating a strong interaction between the molecule and the solid-state nanopore. The results not only promise heightened experimental efficiency with reduced sample volume but also increase the precision in statistical analysis of translocation events, marking a significant stride toward authentic single-molecule nanopore sensing.
纳米孔作为在单分子水平上工作的高灵敏度生物传感器已经出现。然而,大多数纳米孔实验仍然依赖于对多个分子的信号进行平均,从而引入了系统误差。为了克服这一限制并从单个分子中获得准确信息,分子乒乓方法提供了一种涉及反复捕获单个分子的精确方法。在这项研究中,我们通过引入定制的电子系统和控制算法增强了分子乒乓技术,从而实现了超过 10000 次的再捕获。在乒乓过程中,我们观察到转位特征的方差显著降低,为单分子转位动力学提供了新的见解。揭示了折叠 DNA 的不均匀转位速度,表明分子与固态纳米孔之间存在强烈相互作用。研究结果不仅有望以更少的样品量提高实验效率,而且还能提高转位事件的统计分析精度,朝着真正的单分子纳米孔传感迈出了重要一步。