Department of Molecular Medicine, University of Padua, 35121, Padua, Italy.
Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy.
Eur J Med Chem. 2024 Nov 5;277:116737. doi: 10.1016/j.ejmech.2024.116737. Epub 2024 Aug 3.
Influenza viruses (IV) are single-stranded RNA viruses with a negative-sense genome and have the potential to cause pandemics. While vaccines exist for influenza, their protection is only partial. Additionally, there is only a limited number of approved anti-IV drugs, which are associated to emergence of drug resistance. To address these issues, for years we have focused on the development of small-molecules that can interfere with the heterodimerization of PA and PB1 subunits of the IV RNA-dependent RNA polymerase (RdRP). In this study, starting from a cycloheptathiophene-3-carboxamide compound that we recently identified, we performed iterative cycles of medicinal chemistry optimization that led to the identification of compounds 43 and 45 with activity in the nanomolar range against circulating A and B strains of IV. Mechanistic studies demonstrated the ability of 43 and 45 to interfere with viral RdRP activity by disrupting PA-PB1 subunits heterodimerization and to bind to the PA C-terminal domain through biophysical assays. Most important, ADME studies of 45 also showed an improvement in the pharmacokinetic profile with respect to the starting hit.
流感病毒(IV)是单链 RNA 病毒,具有负义基因组,有引发大流行的潜力。虽然有针对流感的疫苗,但它们的保护作用只是部分的。此外,仅有数量有限的批准用于抗 IV 的药物,这些药物与耐药性的出现有关。为了解决这些问题,多年来我们一直专注于开发能够干扰 IV RNA 依赖性 RNA 聚合酶(RdRP)的 PA 和 PB1 亚基异二聚化的小分子。在这项研究中,我们从最近鉴定的一种环庚噻吩-3-甲酰胺化合物开始,进行了多次药物化学优化循环,从而鉴定出具有针对循环 A 和 B 型 IV 的纳米级活性的化合物 43 和 45。机制研究表明,43 和 45 能够通过破坏 PA-PB1 亚基异二聚化来干扰病毒 RdRP 活性,并通过生物物理测定与 PA C 末端结构域结合。最重要的是,45 的 ADME 研究也显示出相对于起始物的药代动力学特征的改善。