Suppr超能文献

巨细胞动脉炎的血浆蛋白质组谱分析。

Plasma proteome profiling in giant cell arteritis.

机构信息

Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota, USA.

Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Ann Rheum Dis. 2024 Nov 14;83(12):1762-1772. doi: 10.1136/ard-2024-225868.

Abstract

OBJECTIVES

This study aimed to identify plasma proteomic signatures that differentiate active and inactive giant cell arteritis (GCA) from non-disease controls. By comprehensively profiling the plasma proteome of both patients with GCA and controls, we aimed to identify plasma proteins that (1) distinguish patients from controls and (2) associate with disease activity in GCA.

METHODS

Plasma samples were obtained from 30 patients with GCA in a multi-institutional, prospective longitudinal study: one captured during active disease and another while in clinical remission. Samples from 30 age-matched/sex-matched/race-matched non-disease controls were also collected. A high-throughput, aptamer-based proteomics assay, which examines over 7000 protein features, was used to generate plasma proteome profiles from study participants.

RESULTS

After adjusting for potential confounders, we identified 537 proteins differentially abundant between active GCA and controls, and 781 between inactive GCA and controls. These proteins suggest distinct immune responses, metabolic pathways and potentially novel physiological processes involved in each disease state. Additionally, we found 16 proteins associated with disease activity in patients with active GCA. Random forest models trained on the plasma proteome profiles accurately differentiated active and inactive GCA groups from controls (95.0% and 98.3% in 10-fold cross-validation, respectively). However, plasma proteins alone provided limited ability to distinguish between active and inactive disease states within the same patients.

CONCLUSIONS

This comprehensive analysis of the plasma proteome in GCA suggests that blood protein signatures integrated with machine learning hold promise for discovering multiplex biomarkers for GCA.

摘要

目的

本研究旨在鉴定出能区分活动性巨细胞动脉炎(GCA)和非疾病对照的血浆蛋白质组学特征。通过全面分析 GCA 患者和对照者的血浆蛋白质组,我们旨在鉴定出(1)能将患者与对照者区分开的血浆蛋白,以及(2)与 GCA 疾病活动相关的血浆蛋白。

方法

从一项多机构、前瞻性纵向研究中的 30 名 GCA 患者中获取血浆样本:一个样本取自活动期疾病,另一个取自临床缓解期。还收集了 30 名年龄匹配/性别匹配/种族匹配的非疾病对照者的血浆样本。采用一种高通量、基于适体的蛋白质组学检测方法,检测超过 7000 种蛋白质特征,以生成研究参与者的血浆蛋白质组谱。

结果

在调整了潜在混杂因素后,我们鉴定出了 537 种在活动性 GCA 和对照组之间差异丰富的蛋白,以及 781 种在非活动性 GCA 和对照组之间差异丰富的蛋白。这些蛋白提示了每个疾病状态下不同的免疫反应、代谢途径和潜在的新的生理过程。此外,我们发现了 16 种与活动性 GCA 患者疾病活动相关的蛋白。基于血浆蛋白质组谱训练的随机森林模型能准确地区分活动性和非活动性 GCA 组与对照组(10 倍交叉验证中的准确率分别为 95.0%和 98.3%)。然而,血浆蛋白本身在同一患者中区分活动性和非活动性疾病状态的能力有限。

结论

对 GCA 血浆蛋白质组的全面分析表明,血液蛋白质特征与机器学习相结合,有望发现用于 GCA 的多重生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/441e/11672071/faba8c95d479/ard-83-12-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验