Neurosciences & Mental Health Research Program, The Hospital for Sick Children, Toronto, Canada.
Institute of Medical Science, University of Toronto, Toronto, Canada.
Sci Rep. 2024 Aug 17;14(1):19102. doi: 10.1038/s41598-024-69870-x.
The use of targeted agents in the treatment of pediatric low-grade gliomas (pLGGs) relies on the determination of molecular status. It has been shown that genetic alterations in pLGG can be identified non-invasively using MRI-based radiomic features or convolutional neural networks (CNNs). We aimed to build and assess a combined radiomics and CNN non-invasive pLGG molecular status identification model. This retrospective study used the tumor regions, manually segmented from T2-FLAIR MR images, of 336 patients treated for pLGG between 1999 and 2018. We designed a CNN and Random Forest radiomics model, along with a model relying on a combination of CNN and radiomic features, to predict the genetic status of pLGG. Additionally, we investigated whether CNNs could predict radiomic feature values from MR images. The combined model (mean AUC: 0.824) outperformed the radiomics model (0.802) and CNN (0.764). The differences in model performance were statistically significant (p-values < 0.05). The CNN was able to learn predictive radiomic features such as surface-to-volume ratio (average correlation: 0.864), and difference matrix dependence non-uniformity normalized (0.924) well but was unable to learn others such as run-length matrix variance (- 0.017) and non-uniformity normalized (- 0.042). Our results show that a model relying on both CNN and radiomic-based features performs better than either approach separately in differentiating the genetic status of pLGGs, and that CNNs are unable to express all handcrafted features.
在治疗小儿低级别胶质瘤(pLGG)时,靶向药物的使用依赖于分子状态的确定。已经表明,使用基于 MRI 的放射组学特征或卷积神经网络(CNN)可以无创地识别 pLGG 的遗传改变。我们旨在建立和评估一种结合放射组学和 CNN 的无创 pLGG 分子状态识别模型。这项回顾性研究使用了 1999 年至 2018 年间治疗 pLGG 的 336 名患者的 T2-FLAIR MR 图像上手动分割的肿瘤区域。我们设计了一个 CNN 和随机森林放射组学模型,以及一个依赖于 CNN 和放射组学特征组合的模型,以预测 pLGG 的遗传状态。此外,我们还研究了 CNN 是否可以从 MR 图像中预测放射组学特征值。综合模型(平均 AUC:0.824)的表现优于放射组学模型(0.802)和 CNN(0.764)。模型性能的差异具有统计学意义(p 值<0.05)。CNN 能够很好地学习预测性放射组学特征,如表面积与体积比(平均相关性:0.864)和差异矩阵依赖性非均匀性归一化(0.924),但无法学习其他特征,如游程长度矩阵方差(-0.017)和非均匀性归一化(-0.042)。我们的结果表明,依赖于 CNN 和基于放射组学的特征的模型在区分 pLGG 遗传状态方面的表现优于单独使用任何一种方法,并且 CNN 无法表达所有手工制作的特征。
Cancers (Basel). 2025-5-4
Radiol Artif Intell. 2024-5
Can Assoc Radiol J. 2024-2
Comput Methods Programs Biomed. 2022-6
AJNR Am J Neuroradiol. 2022-6
PET Clin. 2021-10
Proc IEEE Inst Electr Electron Eng. 2020-1