文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超越手工特征,用于小儿低级别胶质瘤治疗前分子状态的识别。

Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

机构信息

Neurosciences & Mental Health Research Program, The Hospital for Sick Children, Toronto, Canada.

Institute of Medical Science, University of Toronto, Toronto, Canada.

出版信息

Sci Rep. 2024 Aug 17;14(1):19102. doi: 10.1038/s41598-024-69870-x.


DOI:10.1038/s41598-024-69870-x
PMID:39154039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11330469/
Abstract

The use of targeted agents in the treatment of pediatric low-grade gliomas (pLGGs) relies on the determination of molecular status. It has been shown that genetic alterations in pLGG can be identified non-invasively using MRI-based radiomic features or convolutional neural networks (CNNs). We aimed to build and assess a combined radiomics and CNN non-invasive pLGG molecular status identification model. This retrospective study used the tumor regions, manually segmented from T2-FLAIR MR images, of 336 patients treated for pLGG between 1999 and 2018. We designed a CNN and Random Forest radiomics model, along with a model relying on a combination of CNN and radiomic features, to predict the genetic status of pLGG. Additionally, we investigated whether CNNs could predict radiomic feature values from MR images. The combined model (mean AUC: 0.824) outperformed the radiomics model (0.802) and CNN (0.764). The differences in model performance were statistically significant (p-values < 0.05). The CNN was able to learn predictive radiomic features such as surface-to-volume ratio (average correlation: 0.864), and difference matrix dependence non-uniformity normalized (0.924) well but was unable to learn others such as run-length matrix variance (- 0.017) and non-uniformity normalized (- 0.042). Our results show that a model relying on both CNN and radiomic-based features performs better than either approach separately in differentiating the genetic status of pLGGs, and that CNNs are unable to express all handcrafted features.

摘要

在治疗小儿低级别胶质瘤(pLGG)时,靶向药物的使用依赖于分子状态的确定。已经表明,使用基于 MRI 的放射组学特征或卷积神经网络(CNN)可以无创地识别 pLGG 的遗传改变。我们旨在建立和评估一种结合放射组学和 CNN 的无创 pLGG 分子状态识别模型。这项回顾性研究使用了 1999 年至 2018 年间治疗 pLGG 的 336 名患者的 T2-FLAIR MR 图像上手动分割的肿瘤区域。我们设计了一个 CNN 和随机森林放射组学模型,以及一个依赖于 CNN 和放射组学特征组合的模型,以预测 pLGG 的遗传状态。此外,我们还研究了 CNN 是否可以从 MR 图像中预测放射组学特征值。综合模型(平均 AUC:0.824)的表现优于放射组学模型(0.802)和 CNN(0.764)。模型性能的差异具有统计学意义(p 值<0.05)。CNN 能够很好地学习预测性放射组学特征,如表面积与体积比(平均相关性:0.864)和差异矩阵依赖性非均匀性归一化(0.924),但无法学习其他特征,如游程长度矩阵方差(-0.017)和非均匀性归一化(-0.042)。我们的结果表明,依赖于 CNN 和基于放射组学的特征的模型在区分 pLGG 遗传状态方面的表现优于单独使用任何一种方法,并且 CNN 无法表达所有手工制作的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/dd0a92a32448/41598_2024_69870_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/11aeca4c8e82/41598_2024_69870_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/95d685b3dde2/41598_2024_69870_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/951cb1a7c3c9/41598_2024_69870_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/dd0a92a32448/41598_2024_69870_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/11aeca4c8e82/41598_2024_69870_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/95d685b3dde2/41598_2024_69870_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/951cb1a7c3c9/41598_2024_69870_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdcf/11330469/dd0a92a32448/41598_2024_69870_Fig4_HTML.jpg

相似文献

[1]
Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Sci Rep. 2024-8-17

[2]
Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.

BMC Med Imaging. 2024-5-3

[3]
Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma.

Eur Radiol. 2024-4

[4]
Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.

Clin Neurol Neurosurg. 2022-11

[5]
Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers.

Neoplasia. 2023-2

[6]
Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.

Eur Radiol. 2019-12-11

[7]
The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas.

Biomed Res Int. 2020

[8]
Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.

J Digit Imaging. 2020-8

[9]
Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.

Eur Radiol. 2020-3-11

[10]
Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features.

Sci Rep. 2024-6-13

引用本文的文献

[1]
Illuminating radiogenomic signatures in pediatric-type diffuse gliomas: insights into molecular, clinical, and imaging correlations. Part II: low-grade group.

Radiol Med. 2025-7-16

[2]
The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications.

Cancers (Basel). 2025-5-4

[3]
Multimodal contrastive learning for enhanced explainability in pediatric brain tumor molecular diagnosis.

Sci Rep. 2025-3-30

本文引用的文献

[1]
Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning.

Radiol Artif Intell. 2024-5

[2]
Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma.

Eur Radiol. 2024-4

[3]
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas.

BMC Cancer. 2023-9-11

[4]
MRI-Based End-To-End Pediatric Low-Grade Glioma Segmentation and Classification.

Can Assoc Radiol J. 2024-2

[5]
Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.

Clin Neurol Neurosurg. 2022-11

[6]
Testing the Ability of Convolutional Neural Networks to Learn Radiomic Features.

Comput Methods Programs Biomed. 2022-6

[7]
Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology.

AJNR Am J Neuroradiol. 2022-6

[8]
Radiomics in PET Imaging:: A Practical Guide for Newcomers.

PET Clin. 2021-10

[9]
Comparison of Breast MRI Tumor Classification Using Human-Engineered Radiomics, Transfer Learning From Deep Convolutional Neural Networks, and Fusion Methods.

Proc IEEE Inst Electr Electron Eng. 2020-1

[10]
Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study.

NPJ Digit Med. 2021-2-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索