Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
The Hospital for Sick Children, Toronto, ON, Canada.
Can Assoc Radiol J. 2024 Feb;75(1):153-160. doi: 10.1177/08465371231184780. Epub 2023 Jul 4.
MRI-based radiomics models can predict genetic markers in pediatric low-grade glioma (pLGG). These models usually require tumour segmentation, which is tedious and time consuming if done manually. We propose a deep learning (DL) model to automate tumour segmentation and build an end-to-end radiomics-based pipeline for pLGG classification. The proposed architecture is a 2-step U-Net based DL network. The first U-Net is trained on downsampled images to locate the tumour. The second U-Net is trained using image patches centred around the located tumour to produce more refined segmentations. The segmented tumour is then fed into a radiomics-based model to predict the genetic marker of the tumour. Our segmentation model achieved a correlation value of over 80% for all volume-related radiomic features and an average Dice score of .795 in test cases. Feeding the auto-segmentation results into a radiomics model resulted in a mean area under the ROC curve (AUC) of .843, with 95% confidence interval (CI) [.78-.906] and .730, with 95% CI [.671-.789] on the test set for 2-class (BRAF V600E mutation BRAF fusion) and 3-class (BRAF V600E mutation BRAF fusion and Other) classification, respectively. This result was comparable to the AUC of .874, 95% CI [.829-.919] and .758, 95% CI [.724-.792] for the radiomics model trained and tested on the manual segmentations in 2-class and 3-class classification scenarios, respectively. The proposed end-to-end pipeline for pLGG segmentation and classification produced results comparable to manual segmentation when it was used for a radiomics-based genetic marker prediction model.
基于 MRI 的放射组学模型可预测儿科低级别胶质瘤(pLGG)的遗传标志物。这些模型通常需要肿瘤分割,如果手动进行,既繁琐又耗时。我们提出了一种深度学习(DL)模型来自动进行肿瘤分割,并构建了一个用于 pLGG 分类的端到端基于放射组学的管道。所提出的架构是基于两步 U-Net 的 DL 网络。第一 U-Net 是在降采样图像上进行训练,以定位肿瘤。第二 U-Net 是使用以定位的肿瘤为中心的图像块进行训练,以产生更精细的分割。然后将分割的肿瘤输入基于放射组学的模型,以预测肿瘤的遗传标志物。我们的分割模型实现了所有与体积相关的放射组学特征的相关值超过 80%,在测试案例中平均 Dice 分数为.795。将自动分割结果输入放射组学模型,得到 2 类(BRAF V600E 突变 BRAF 融合)和 3 类(BRAF V600E 突变 BRAF 融合和其他)分类的测试集上的平均 ROC 曲线下面积(AUC)分别为.843,95%置信区间(CI)[.78-.906]和.730,95%CI [.671-.789]。这一结果与在 2 类和 3 类分类场景中分别在手动分割上训练和测试的放射组学模型的 AUC 为.874,95%CI [.829-.919]和.758,95%CI [.724-.792]相当。用于基于放射组学的遗传标志物预测模型的 pLGG 分割和分类的端到端管道的结果与手动分割相当。