文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于放射组学的术前分级诊断在 BRAF 改变型儿童低级别胶质瘤的应用。

Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma.

机构信息

Neurosciences & Mental Health Research Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.

Institute of Medical Science, University of Toronto, Toronto, Canada.

出版信息

Eur Radiol. 2024 Apr;34(4):2772-2781. doi: 10.1007/s00330-023-10267-1. Epub 2023 Oct 7.


DOI:10.1007/s00330-023-10267-1
PMID:37803212
Abstract

OBJECTIVES: Currently, the BRAF status of pediatric low-grade glioma (pLGG) patients is determined through a biopsy. We established a nomogram to predict BRAF status non-invasively using clinical and radiomic factors. Additionally, we assessed an advanced thresholding method to provide only high-confidence predictions for the molecular subtype. Finally, we tested whether radiomic features provide additional predictive information for this classification task, beyond that which is embedded in the location of the tumor. METHODS: Random forest (RF) models were trained on radiomic and clinical features both separately and together, to evaluate the utility of each feature set. Instead of using the traditional single threshold technique to convert the model outputs to class predictions, we implemented a double threshold mechanism that accounted for uncertainty. Additionally, a linear model was trained and depicted graphically as a nomogram. RESULTS: The combined RF (AUC: 0.925) outperformed the RFs trained on radiomic (AUC: 0.863) or clinical (AUC: 0.889) features alone. The linear model had a comparable AUC (0.916), despite its lower complexity. Traditional thresholding produced an accuracy of 84.5%, while the double threshold approach yielded 92.2% accuracy on the 80.7% of patients with the highest confidence predictions. CONCLUSION: Models that included radiomic features outperformed, underscoring their importance for the prediction of BRAF status. A linear model performed similarly to RF but with the added benefit that it can be visualized as a nomogram, improving the explainability of the model. The double threshold technique was able to identify uncertain predictions, enhancing the clinical utility of the model. CLINICAL RELEVANCE STATEMENT: Radiomic features and tumor location are both predictive of BRAF status in pLGG patients. We show that they contain complementary information and depict the optimal model as a nomogram, which can be used as a non-invasive alternative to biopsy. KEY POINTS: • Radiomic features provide additional predictive information for the determination of the molecular subtype of pediatric low-grade gliomas patients, beyond what is embedded in the location of the tumor, which has an established relationship with genetic status. • An advanced thresholding method can help to distinguish cases where machine learning models have a high chance of being (in)correct, improving the utility of these models. • A simple linear model performs similarly to a more powerful random forest model at classifying the molecular subtype of pediatric low-grade gliomas but has the added benefit that it can be converted into a nomogram, which may facilitate clinical implementation by improving the explainability of the model.

摘要

目的:目前,儿科低级别胶质瘤(pLGG)患者的 BRAF 状态是通过活检确定的。我们建立了一个列线图,通过临床和放射组学因素无创预测 BRAF 状态。此外,我们评估了一种先进的阈值方法,为分子亚型提供仅具有高置信度的预测。最后,我们测试了放射组学特征是否为该分类任务提供了超越肿瘤位置所嵌入的信息的附加预测信息。

方法:随机森林(RF)模型分别基于放射组学和临床特征进行训练,以评估每个特征集的效用。我们没有使用传统的单阈值技术将模型输出转换为类别预测,而是实现了一种考虑不确定性的双阈值机制。此外,还训练了一个线性模型并以列线图的形式进行了描述。

结果:联合 RF(AUC:0.925)优于仅基于放射组学(AUC:0.863)或临床(AUC:0.889)特征训练的 RF。尽管线性模型的复杂性较低,但它的 AUC 相似(0.916)。传统阈值产生了 84.5%的准确率,而双阈值方法在具有最高置信度预测的 80.7%的患者中产生了 92.2%的准确率。

结论:包含放射组学特征的模型表现优于不包含放射组学特征的模型,这突出了它们对 BRAF 状态预测的重要性。线性模型的性能与 RF 相似,但具有可以可视化的优势作为列线图,从而提高了模型的可解释性。双阈值技术能够识别不确定的预测,增强了模型的临床实用性。

临床相关性声明:放射组学特征和肿瘤位置均可预测 pLGG 患者的 BRAF 状态。我们表明,它们包含互补信息,并将最佳模型描绘为列线图,可以作为活检的非侵入性替代方法。

要点:

  1. 放射组学特征为确定儿科低级别胶质瘤患者的分子亚型提供了除肿瘤位置之外的额外预测信息,肿瘤位置与遗传状态有既定关系。
  2. 先进的阈值方法可以帮助区分机器学习模型有高(或低)准确率的情况,从而提高这些模型的实用性。
  3. 简单的线性模型在对儿科低级别胶质瘤的分子亚型进行分类方面与功能更强大的随机森林模型表现相似,但具有将其转换为列线图的附加优势,这可能通过提高模型的可解释性来促进临床实施。

相似文献

[1]
Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma.

Eur Radiol. 2024-4

[2]
Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Sci Rep. 2024-8-17

[3]
Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.

Clin Neurol Neurosurg. 2022-11

[4]
Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of Mutated and -Fused Tumors.

AJNR Am J Neuroradiol. 2021-4

[5]
Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning.

AJNR Am J Neuroradiol. 2024-6-7

[6]
MRI-Based End-To-End Pediatric Low-Grade Glioma Segmentation and Classification.

Can Assoc Radiol J. 2024-2

[7]
Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.

Eur Radiol. 2020-3-11

[8]
MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.

Front Oncol. 2024-5-13

[9]
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas.

BMC Cancer. 2023-9-11

[10]
Multimodal MRI-based radiomic nomogram for predicting telomerase reverse transcriptase promoter mutation in IDH-wildtype histological lower-grade gliomas.

Medicine (Baltimore). 2023-12-22

引用本文的文献

[1]
Radiomics in pediatric brain tumors: from images to insights.

Discov Oncol. 2025-8-15

[2]
Multimodal contrastive learning for enhanced explainability in pediatric brain tumor molecular diagnosis.

Sci Rep. 2025-3-30

[3]
Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma.

Nat Commun. 2025-1-2

[4]
Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Sci Rep. 2024-8-17

[5]
Applications of machine learning to MR imaging of pediatric low-grade gliomas.

Childs Nerv Syst. 2024-10

本文引用的文献

[1]
Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of Mutated and -Fused Tumors.

AJNR Am J Neuroradiol. 2021-4

[2]
Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas.

Cancer Cell. 2020-4-13

[3]
Pediatric low-grade glioma in the era of molecular diagnostics.

Acta Neuropathol Commun. 2020-3-12

[4]
Computational Radiomics System to Decode the Radiographic Phenotype.

Cancer Res. 2017-11-1

[5]
Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas.

J Clin Oncol. 2017-9-1

[6]
Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management.

J Clin Oncol. 2017-6-22

[7]
Pediatric low-grade gliomas.

J Child Neurol. 2009-11

[8]
How to build and interpret a nomogram for cancer prognosis.

J Clin Oncol. 2008-3-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索