Suppr超能文献

阐明 S100A9 的泛肿瘤全景:整合生物信息学和孟德尔随机分析的预后和治疗推论。

Elucidating the pan-oncologic landscape of S100A9: prognostic and therapeutic corollaries from an integrative bioinformatics and Mendelian randomization analysis.

机构信息

The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.

Hunan University of Chinese Medicine, Changsha, 410128, China.

出版信息

Sci Rep. 2024 Aug 17;14(1):19071. doi: 10.1038/s41598-024-70223-x.

Abstract

The calcium-binding protein S100A9 has emerged as a pivotal biomolecular actor in oncology, implicated in numerous malignancies. This comprehensive bioinformatics study transcends traditional boundaries, investigating the prognostic and therapeutic potential of S100A9 across diverse neoplastic entities. Leveraging a wide array of bioinformatics tools and publicly available cancer genomics databases, such as TCGA, we systematically examined the S100A9 gene. Our approach included differential expression analysis, mutational burden assessment, protein interaction networks, and survival analysis. This robust computational framework provided a high-resolution view of S100A9's role in cancer biology. The study meticulously explored S100A9's oncogenic facets, incorporating comprehensive analyses of its relationship with prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and immune cell infiltration across various tumor types. This study presents a panoramic view of S100A9 expression across a spectrum of human cancers, revealing a heterogeneous expression landscape. Elevated S100A9 expression was detected in malignancies such as BLCA (Bladder Urothelial Carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carcinoma), and GBM (Glioblastoma multiforme), while reduced expression was noted in BRCA (Breast invasive carcinoma), HNSC (Head and Neck squamous cell carcinoma), and KICH (Kidney Chromophobe). This disparate expression pattern suggests that S100A9's role in cancer biology is multifaceted and context-dependent. Prognostically, S100A9 expression correlates variably with patient outcomes across different cancer types. Furthermore, its expression is intricately associated with TMB and MSI in nine cancer types. Detailed examination of six selected tumors-BRCA, CESC, KIRC (Kidney renal clear cell carcinoma), LUSC (Lung squamous cell carcinoma), SKCM (Skin Cutaneous Melanoma); STAD (Stomach adenocarcinoma)-revealed a negative correlation of S100A9 expression with the infiltration of most immune cells, but a positive correlation with neutrophils, M1 macrophages, and activated NK cells, highlighting the complex interplay between S100A9 and the tumor immune environment. This bioinformatics synthesis posits S100A9 as a significant player in cancer progression, offering valuable prognostic insights. The data underscore the utility of S100A9 as a prognostic biomarker and its potential as a therapeutic target. The therapeutic implications are profound, suggesting that modulation of S100A9 activity could significantly impact cancer management strategies.

摘要

钙结合蛋白 S100A9 已成为肿瘤学中一个关键的生物分子,它与许多恶性肿瘤有关。这项全面的生物信息学研究超越了传统的界限,研究了 S100A9 在各种肿瘤实体中的预后和治疗潜力。利用广泛的生物信息学工具和公共可用的癌症基因组学数据库,如 TCGA,我们系统地研究了 S100A9 基因。我们的方法包括差异表达分析、突变负担评估、蛋白质相互作用网络和生存分析。这个强大的计算框架提供了 S100A9 在癌症生物学中作用的高分辨率视图。这项研究细致地探讨了 S100A9 的致癌特征,包括对其与预后、肿瘤突变负担(TMB)、微卫星不稳定性(MSI)、DNA 甲基化和各种肿瘤类型的免疫细胞浸润关系的全面分析。这项研究展示了 S100A9 在一系列人类癌症中的表达全景,揭示了一个异质的表达景观。在 BLCA(膀胱癌)、CESC(宫颈鳞状细胞癌和子宫内膜腺癌)、COAD(结肠腺癌)、ESCA(食管癌)和 GBM(多形性胶质母细胞瘤)等恶性肿瘤中检测到 S100A9 的表达升高,而在 BRCA(乳腺癌)、HNSC(头颈部鳞状细胞癌)和 KICH(肾嫌色细胞癌)中则观察到表达降低。这种不同的表达模式表明,S100A9 在癌症生物学中的作用是多方面的,依赖于上下文。在预后方面,S100A9 的表达与不同癌症类型的患者结局有差异相关。此外,在 9 种癌症类型中,S100A9 的表达与 TMB 和 MSI 密切相关。对 BRCA、CESC、KIRC(肾透明细胞癌)、LUSC(肺鳞状细胞癌)、SKCM(皮肤黑色素瘤)和 STAD(胃腺癌)这六种选定肿瘤的详细检查表明,S100A9 的表达与大多数免疫细胞的浸润呈负相关,但与中性粒细胞、M1 巨噬细胞和活化的 NK 细胞呈正相关,这突出了 S100A9 与肿瘤免疫环境之间的复杂相互作用。这种生物信息学综合认为 S100A9 是癌症进展中的一个重要参与者,提供了有价值的预后见解。这些数据强调了 S100A9 作为预后生物标志物的效用及其作为治疗靶点的潜力。治疗意义深远,表明调节 S100A9 的活性可能会对癌症管理策略产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a821/11330479/040b0a581473/41598_2024_70223_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验