Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
Bioelectrochemistry. 2024 Dec;160:108797. doi: 10.1016/j.bioelechem.2024.108797. Epub 2024 Aug 15.
The residue of tobramycin, a broad spectrum antibiotic commonly used in animal husbandry, has evitable impact on human health, which may cause kidney damage, respiratory paralysis, neuromuscular blockade and cross-allergy in humans. Sensitive monitoring of tobramycin in animal-derived food products is therefore of great importance. Herein, a new aptamer electrochemical biosensor for sensing tobramycin with high sensitivity is demonstrated via exonuclease III (Exo III) and metal ion-dependent DNAzyme recycling and hybridization chain reaction (HCR) signal amplification cascades. Tobramycin analyte binds aptamer-containing hairpin probe to switch its conformation to expose the toehold sequence, which triggers Exo III-based catalytic digestion of the secondary hairpin to release many DNAzyme strands. The substrate hairpins immobilized on the Au electrode (AuE) are then cyclically cleaved by the DNAzymes to form ssDNAs, which further initiate HCR formation of lots of long methylene blue (MB)-tagged dsDNA polymers on the AuE. Subsequently electro-oxidation of these MB labels thus exhibit highly enhanced currents for sensing tobramycin within the 5-1000 nM concentration range with an impressive detection limit of 3.51 nM. Furthermore, this strategy has high selectivity for detecting tobramycin in milk and shows promising potential for detect other antibiotics for food safety monitoring.
妥布霉素是一种广泛应用于畜牧业的广谱抗生素,其残留不可避免地会对人类健康造成影响,可能导致人类肾脏损伤、呼吸麻痹、神经肌肉阻滞和交叉过敏。因此,对动物源性食品中妥布霉素的敏感监测非常重要。在此,通过外切酶 III(Exo III)和金属离子依赖的 DNA 酶循环和杂交链式反应(HCR)信号放大级联,展示了一种用于高灵敏度检测妥布霉素的新型适体电化学生物传感器。妥布霉素分析物与包含适体的发夹探针结合,改变其构象以暴露结合点序列,从而触发基于 Exo III 的二级发夹的催化消化,释放许多 DNA 酶链。然后,固定在 Au 电极(AuE)上的底物发夹被 DNA 酶循环切割,形成 ssDNA,进一步引发大量长的亚甲蓝(MB)标记的 dsDNA 聚合物在 AuE 上的 HCR 形成。随后,这些 MB 标记物的电氧化因此表现出对妥布霉素的高增强电流,在 5-1000 nM 浓度范围内具有令人印象深刻的检测限 3.51 nM。此外,该策略对牛奶中妥布霉素的检测具有高选择性,并显示出用于食品安全监测的其他抗生素检测的广阔应用前景。