Suppr超能文献

基于深度扩散模型和生成对抗网络的半监督语义图像分割。

Semi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networks.

机构信息

ITIS Software, University of Málaga, Calle Arquitecto Francisco Peñalosa 18, Málaga 29010, Spain.

出版信息

Int J Neural Syst. 2024 Nov;34(11):2450057. doi: 10.1142/S0129065724500576. Epub 2024 Aug 15.

Abstract

Typically, deep learning models for image segmentation tasks are trained using large datasets of images annotated at the pixel level, which can be expensive and highly time-consuming. A way to reduce the amount of annotated images required for training is to adopt a semi-supervised approach. In this regard, generative deep learning models, concretely Generative Adversarial Networks (GANs), have been adapted to semi-supervised training of segmentation tasks. This work proposes MaskGDM, a deep learning architecture combining some ideas from EditGAN, a GAN that jointly models images and their segmentations, together with a generative diffusion model. With careful integration, we find that using a generative diffusion model can improve EditGAN performance results in multiple segmentation datasets, both multi-class and with binary labels. According to the quantitative results obtained, the proposed model improves multi-class image segmentation when compared to the EditGAN and DatasetGAN models, respectively, by [Formula: see text] and [Formula: see text]. Moreover, using the ISIC dataset, our proposal improves the results from other models by up to [Formula: see text] for the binary image segmentation approach.

摘要

通常,用于图像分割任务的深度学习模型是使用像素级注释的大型图像数据集进行训练的,这可能既昂贵又非常耗时。减少训练所需注释图像数量的一种方法是采用半监督方法。在这方面,生成式深度学习模型,具体来说是生成式对抗网络 (GAN),已经被应用于分割任务的半监督训练。这项工作提出了 MaskGDM,这是一种深度学习架构,结合了 EditGAN 的一些想法,EditGAN 是一种联合建模图像及其分割的 GAN,以及一个生成式扩散模型。经过仔细整合,我们发现使用生成式扩散模型可以提高 EditGAN 在多个分割数据集(多类和二进制标签)中的性能结果。根据获得的定量结果,与 EditGAN 和 DatasetGAN 模型相比,所提出的模型在多类图像分割方面分别提高了[Formula: see text]和[Formula: see text]。此外,在使用 ISIC 数据集时,我们的方案通过二进制图像分割方法将其他模型的结果提高了高达[Formula: see text]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验