Mirzaei Golrokh, Gupta Aaditya, Adeli Hojjat
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43302, USA.
Departments of Biomedical Informatics and Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
Rev Neurosci. 2025 Sep 16. doi: 10.1515/revneuro-2025-0062.
Medical imaging plays a crucial role in the accurate diagnosis and prognosis of various medical conditions, with each modality offering unique and complementary insights into the body's structure and function. However, no single imaging technique can capture the full spectrum of necessary information. Data fusion has emerged as a powerful tool to integrate information from different perspectives, including multiple modalities, views, temporal sequences, and spatial scales. By combining data, fusion techniques provide a more comprehensive understanding, significantly enhancing the precision and reliability of clinical analyses. This paper presents an overview of data fusion approaches - covering multi-view, multi-modal, and multi-scale strategies - across imaging modalities such as MRI, CT, PET, SPECT, EEG, and MEG, with a particular emphasis on applications in neurological disorders. Furthermore, we highlight the latest advancements in data fusion methods and key studies published since 2016, illustrating the progress and growing impact of this interdisciplinary field.
医学成像在各种医疗状况的准确诊断和预后评估中起着至关重要的作用,每种成像方式都能对人体的结构和功能提供独特且互补的见解。然而,没有一种单一的成像技术能够获取所有必要信息。数据融合已成为一种强大的工具,用于整合来自不同视角的信息,包括多种成像方式、视图、时间序列和空间尺度。通过合并数据,融合技术能提供更全面的理解,显著提高临床分析的精度和可靠性。本文概述了数据融合方法——涵盖多视图、多模态和多尺度策略——在诸如磁共振成像(MRI)、计算机断层扫描(CT)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)、脑电图(EEG)和脑磁图(MEG)等成像方式中的应用,特别强调了其在神经系统疾病中的应用。此外,我们突出了自2016年以来数据融合方法的最新进展以及关键研究,展示了这一跨学科领域的进展和日益增长的影响力。