Suppr超能文献

一种基于有限监督经验来发现危险废物非法倾倒潜在地点的集成机器学习模型。

An ensemble machine learning model to uncover potential sites of hazardous waste illegal dumping based on limited supervision experience.

作者信息

Geng Jinghua, Ding Yimeng, Xie Wenjun, Fang Wen, Liu Miaomiao, Ma Zongwei, Yang Jianxun, Bi Jun

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 China.

出版信息

Fundam Res. 2023 Jul 14;4(4):972-978. doi: 10.1016/j.fmre.2023.06.010. eCollection 2024 Jul.

Abstract

With the soaring generation of hazardous waste (HW) during industrialization and urbanization, HW illegal dumping continues to be an intractable global issue. Particularly in developing regions with lax regulations, it has become a major source of soil and groundwater contamination. One dominant challenge for HW illegal dumping supervision is the invisibility of dumping sites, which makes HW illegal dumping difficult to be found, thereby causing a long-term adverse impact on the environment. How to utilize the limited historic supervision records to screen the potential dumping sites in the whole region is a key challenge to be addressed. In this study, a novel machine learning model based on the positive-unlabeled (PU) learning algorithm was proposed to resolve this problem through the ensemble method which could iteratively mine the features of limited historic cases. Validation of the random forest-based PU model showed that the predicted top 30% of high-risk areas could cover 68.1% of newly reported cases in the studied region, indicating the reliability of the model prediction. This novel framework will also be promising in other environmental management scenarios to deal with numerous unknown samples based on limited prior experience.

摘要

随着工业化和城市化进程中危险废物(HW)的大量产生,危险废物非法倾倒仍然是一个棘手的全球性问题。特别是在监管宽松的发展中地区,它已成为土壤和地下水污染的主要来源。危险废物非法倾倒监管面临的一个主要挑战是倾倒地点的隐匿性,这使得危险废物非法倾倒难以被发现,从而对环境造成长期的不利影响。如何利用有限的历史监管记录在整个区域内筛选潜在的倾倒地点是一个亟待解决的关键挑战。在本研究中,提出了一种基于正无标记(PU)学习算法的新型机器学习模型,通过集成方法迭代挖掘有限历史案例的特征来解决这一问题。基于随机森林的PU模型验证表明,预测的前30%高风险区域能够覆盖研究区域内68.1%的新报告案例,表明模型预测具有可靠性。这个新颖的框架在其他环境管理场景中,基于有限的先验经验处理大量未知样本方面也将大有可为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0ef/11330102/2ea376f8a837/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验