Ma Jun, Singh Shilpi, Li Ming, Seelig Davis, Molnar Gregory F, Wong Eric T, Dhawan Sanjay, Kim Stefan, Helland Logan, Chen David, Tapinos Nikos, Lawler Sean, Singh Gatikrushna, Chen Clark C
Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Veterinary Clinic Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Neurooncol Adv. 2024 Jul 13;6(1):vdae121. doi: 10.1093/noajnl/vdae121. eCollection 2024 Jan-Dec.
While directionally rotating tumor-treating fields (TTF) therapy has garnered considerable clinical interest in recent years, there has been comparatively less focus on directionally non-rotating electric field therapy (dnEFT).
We explored dnEFT generated through customized electrodes as a glioblastoma therapy in in vitro and in vivo preclinical models. The effects of dnEFT on tumor apoptosis and microglia/macrophages in the tumor microenvironment were tested using flow-cytometric and qPCR assays.
In vitro, dnEFT generated using a clinical-grade spinal cord stimulator showed antineoplastic activity against independent glioblastoma cell lines. In support of the results obtained using the clinical-grade electrode, dnEFT delivered through a customized, 2-electrode array induced glioblastoma apoptosis. To characterize this effect in vivo, a custom-designed 4-electrode array was fabricated such that tumor cells can be implanted into murine cerebrum through a center channel equidistant from the electrodes. After implantation with this array and luciferase-expressing murine GL261 glioblastoma cells, mice were randomized to dnEFT or placebo. Relative to placebo-treated mice, dnEFT reduced tumor growth (measured by bioluminescence) and prolonged survival (median survival gain of 6.5 days). Analysis of brain sections following dnEFT showed a notable increase in the accumulation of peritumoral macrophage/microglia with increased expression of M1 genes (IFNγ, TNFα, and IL-6) and decreased expression of M2 genes (CD206, Arg, and IL-10) relative to placebo-treated tumors.
Our results suggest therapeutic potential in glioblastoma for dnEFT delivered through implanted electrodes, supporting the development of a proof-of-principle clinical trial using commercially available deep brain stimulator electrodes.
尽管近年来定向旋转肿瘤治疗场(TTF)疗法引起了相当大的临床关注,但定向非旋转电场疗法(dnEFT)的关注度相对较低。
我们在体外和体内临床前模型中探索了通过定制电极产生的dnEFT作为胶质母细胞瘤的治疗方法。使用流式细胞术和qPCR分析测试了dnEFT对肿瘤微环境中肿瘤细胞凋亡和小胶质细胞/巨噬细胞的影响。
在体外,使用临床级脊髓刺激器产生的dnEFT对独立的胶质母细胞瘤细胞系显示出抗肿瘤活性。为支持使用临床级电极获得的结果,通过定制的双电极阵列施加的dnEFT可诱导胶质母细胞瘤细胞凋亡。为在体内表征这种效应,制作了一种定制设计的四电极阵列,使得肿瘤细胞可以通过与电极等距的中心通道植入小鼠大脑。在用该阵列和表达荧光素酶的小鼠GL261胶质母细胞瘤细胞植入后,将小鼠随机分为dnEFT组或安慰剂组。相对于接受安慰剂治疗的小鼠,dnEFT可减少肿瘤生长(通过生物发光测量)并延长生存期(中位生存期增加6.5天)。dnEFT治疗后对脑切片的分析显示,与接受安慰剂治疗的肿瘤相比,肿瘤周围巨噬细胞/小胶质细胞的积累显著增加,M1基因(IFNγ、TNFα和IL-6)的表达增加,M2基因(CD206、Arg和IL-10)的表达减少。
我们的结果表明,通过植入电极递送的dnEFT在胶质母细胞瘤治疗中具有潜在的治疗价值,支持使用市售深部脑刺激器电极开展原理验证性临床试验。