文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

挖掘人类临床废弃物作为神经再生干细胞的丰富来源。

Mining human clinical waste as a rich source of stem cells for neural regeneration.

作者信息

Eivazi Zadeh Zahra, Nour Shirin, Kianersi Sogol, Jonidi Shariatzadeh Farinaz, Williams Richard J, Nisbet David R, Bruggeman Kiara F

机构信息

Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.

The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia.

出版信息

iScience. 2024 Jun 19;27(8):110307. doi: 10.1016/j.isci.2024.110307. eCollection 2024 Aug 16.


DOI:10.1016/j.isci.2024.110307
PMID:39156636
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11326931/
Abstract

Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.

摘要

神经疾病的治疗具有挑战性,被视为全球残疾和发病的主要原因之一。干细胞可以提供一种解决方案,通过提供一种机制来替代受损的神经回路。然而,获得足够的神经再生细胞来源仍然是一个重大挑战。近年来,从产前和成人临床废弃组织/产品中提取的废物衍生干细胞(WDS-lCs)在神经组织修复和重塑中的应用越来越受到关注。这一经常被忽视的细胞库具有良好的特性,包括自我更新、神经分化、分泌神经源性因子、成本效益高以及伦理问题少。在此,我们提供了一个视角,涉及产前和成人WDS-lCs在神经应用中用于细胞替代治疗的生物学特性、提取方案以及临床前和临床治疗,以及在优化这些以患者为主导的治疗方法中所涉及的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/a4d3fa412199/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/6592998bdd7d/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/34d30f26bb12/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/c5488f036ecd/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/34198aef0b2a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/a343705239fc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/6d35dfd7ac09/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/a4d3fa412199/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/6592998bdd7d/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/34d30f26bb12/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/c5488f036ecd/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/34198aef0b2a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/a343705239fc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/6d35dfd7ac09/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d9/11326931/a4d3fa412199/gr6.jpg

相似文献

[1]
Mining human clinical waste as a rich source of stem cells for neural regeneration.

iScience. 2024-6-19

[2]
Stem Cell Therapy in Brain Trauma: Implications for Repair and Regeneration of Injured Brain in Experimental TBI Models

2015

[3]
Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.

Ont Health Technol Assess Ser. 2005

[4]
Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies.

Front Neurosci. 2019-8-6

[5]
Stem cells and cardiac repair: a critical analysis.

J Cardiovasc Transl Res. 2008-1-31

[6]
Use of Brain-Derived Stem/Progenitor Cells and Derived Extracellular Vesicles to Repair Damaged Neural Tissues: Lessons Learned from Connective Tissue Repair Regarding Variables Limiting Progress and Approaches to Overcome Limitations.

Int J Mol Sci. 2023-2-8

[7]
Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

Int J Mol Sci. 2016-6-21

[8]
Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration.

Stem Cells Int. 2012-10-4

[9]
Periodontal ligament stem cells as a promising therapeutic target for neural damage.

Stem Cell Res Ther. 2022-6-21

[10]
New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis: a potential role for stem cells in the lung parenchyma and implications for therapy.

Pharm Res. 2007-5

引用本文的文献

[1]
Melatonin and angiogenesis potential in stem cells.

Stem Cell Res Ther. 2025-8-5

本文引用的文献

[1]
Generation of canine induced pluripotent stem cells under feeder-free conditions using Sendai virus vector encoding six canine reprogramming factors.

Stem Cell Reports. 2024-1-9

[2]
Mechanisms of Wharton's Jelly-derived MSCs in enhancing peripheral nerve regeneration.

Sci Rep. 2023-12-1

[3]
3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages.

Cell Stem Cell. 2023-9-7

[4]
Stem cell sources from human biological waste material: a role for the umbilical cord and dental pulp stem cells for regenerative medicine.

Hum Cell. 2023-7

[5]
Next steps in regenerative medicine.

Cell Stem Cell. 2023-5-4

[6]
Stem Cells in Clinical Trials on Neurological Disorders: Trends in Stem Cells Origins, Indications, and Status of the Clinical Trials.

Int J Mol Sci. 2022-9-28

[7]
Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development.

Cell Stem Cell. 2022-9-1

[8]
How to Make Sense out of 75,000 Mesenchymal Stromal Cell Publications?

Cells. 2022-4-22

[9]
Spinal cord injury target-immunotherapy with TNF-α autoregulated and feedback-controlled human umbilical cord mesenchymal stem cell derived exosomes remodelled by CRISPR/Cas9 plasmid.

Biomater Adv. 2022-2

[10]
Engineering multiscale structural orders for high-fidelity embryoids and organoids.

Cell Stem Cell. 2022-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索