Suppr超能文献

一个用于花生叶部病害检测与分类的新型花生叶数据集。

A novel groundnut leaf dataset for detection and classification of groundnut leaf diseases.

作者信息

Sasmal Buddhadev, Das Arunita, Dhal Krishna Gopal, Saheb Sk Belal, Khurma Ruba Abu, Castillo Pedro A

机构信息

Department of Pure and Applied Science, Midnapore City College, Paschim Medinipur, West Bengal, India.

Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal, India.

出版信息

Data Brief. 2024 Jul 20;55:110763. doi: 10.1016/j.dib.2024.110763. eCollection 2024 Aug.

Abstract

Groundnut (Arachis hypogaea) is a widely cultivated legume crop that plays a vital role in global agriculture and food security. It is a major source of vegetable oil and protein for human consumption, as well as a cash crop for farmers in many regions. Despite the importance of this crop to household food security and income, diseases, particularly Leaf spot (early and late), Alternaria leaf spot, Rust, and Rosette, have had a significant impact on its production. Deep learning (DL) techniques, especially convolutional neural networks (CNNs), have demonstrated significant ability for early diagnosis of the plant leaf diseases. However, the availability of groundnut-specific datasets for training and evaluation of DL models is limited, hindering the development and benchmarking of groundnut-related deep learning applications. Therefore, this study provides a dataset of groundnut leaf images, both diseased and healthy, captured in real cultivation fields at Ramchandrapur, Purba Medinipur, West Bengal, using a smartphone camera. The dataset contains a total of 1720 original images, that can be utilized to train DL models to detect groundnut leaf diseases at an early stage. Additionally, we provide baseline results of applying state-of-the-art CNN architectures on the dataset for groundnut disease classification, demonstrating the potential of the dataset for advancing groundnut-related research using deep learning. The aim of creating this dataset is to facilitate in the creation of sophisticated methods that will aid farmers accurately identify diseases and enhance groundnut yields.

摘要

花生(Arachis hypogaea)是一种广泛种植的豆类作物,在全球农业和粮食安全中起着至关重要的作用。它是人类食用植物油和蛋白质的主要来源,也是许多地区农民的经济作物。尽管这种作物对家庭粮食安全和收入很重要,但疾病,特别是叶斑病(早斑和晚斑)、链格孢叶斑病、锈病和丛枝病,对其产量产生了重大影响。深度学习(DL)技术,特别是卷积神经网络(CNN),已显示出对植物叶片疾病进行早期诊断的显著能力。然而,用于训练和评估DL模型的花生特定数据集有限,这阻碍了与花生相关的深度学习应用的开发和基准测试。因此,本研究提供了一个花生叶片图像数据集,包括患病和健康的图像,这些图像是在西孟加拉邦普尔巴梅迪尼布尔的拉姆钱德拉布尔的实际种植田中使用智能手机摄像头拍摄的。该数据集总共包含1720张原始图像,可用于训练DL模型以早期检测花生叶片疾病。此外,我们提供了将最先进的CNN架构应用于该数据集进行花生疾病分类的基线结果,证明了该数据集在推进使用深度学习的花生相关研究方面的潜力。创建这个数据集的目的是促进创建复杂的方法,帮助农民准确识别疾病并提高花生产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/072d/11327543/360be11d61f6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验