Quintelier Matthias, Hajizadeh Amirhossein, Zintler Alexander, Gonçalves Bruna F, Fernández de Luis Roberto, Esrafili Dizaji Leili, Vande Velde Christophe M L, Wuttke Stefan, Hadermann Joke
EMAT, Department of Physics, University of Antwerp, 2020 Antwerp, Belgium.
BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park 48940 Leioa, Spain.
Chem Mater. 2024 Jul 22;36(15):7274-7282. doi: 10.1021/acs.chemmater.4c01153. eCollection 2024 Aug 13.
Metal-organic framework (MOF)-74 is known for its effectiveness in selectively capturing carbon dioxide (CO). Especially the Zn and Cu versions of MOF-74 show high efficiency of this material for CO. However, the activation of this MOF, which is a crucial step for its utilization, is so far not well understood. Here, we are closing the knowledge gap by examining the activation using, for the first time in the MOF, three-dimensional electron diffraction (3DED) during heating. The use of state-of-the-art direct electron detectors enables rapid acquisition and minimal exposure times, therefore minimizing beam damage to the very electron beam-sensitive MOF material. The activation process of Zn-MOF-74 and Cu-MOF-74 is systematically studied , proving the creation of open metal sites. Differences in thermal stability between Zn-MOF-74 and Cu-MOF-74 are attributed to the strength of the metal-oxygen bonds and Jahn-Teller distortions. In the case of Zn-MOF-74, we observe previously unknown remaining electrostatic potentials inside the MOF pores, which indicate the presence of remaining atoms that might impede gas flow throughout the structure when using the MOF for absorption purposes. We believe our study exemplifies the significance of employing advanced characterization techniques to enhance our material understanding, which is a crucial step for unlocking the full potential of MOFs in various applications.
金属有机框架(MOF)-74以其选择性捕获二氧化碳(CO₂)的有效性而闻名。特别是MOF-74的锌和铜版本对CO₂显示出该材料的高效率。然而,这种MOF的活化作为其利用的关键步骤,目前尚未得到很好的理解。在此,我们通过首次在MOF中使用加热过程中的三维电子衍射(3DED)来研究活化,从而填补了这一知识空白。使用最先进的直接电子探测器能够实现快速采集并将曝光时间减至最短,因此将对电子束非常敏感的MOF材料的束损伤降至最低。对Zn-MOF-74和Cu-MOF-74的活化过程进行了系统研究,证实了开放金属位点的产生。Zn-MOF-74和Cu-MOF-74之间热稳定性的差异归因于金属 - 氧键的强度和 Jahn-Teller 畸变。在Zn-MOF-74的情况下,我们在MOF孔内观察到以前未知的剩余静电势,这表明存在可能在将MOF用于吸收目的时阻碍气体在整个结构中流动的残留原子。我们相信我们的研究例证了采用先进表征技术以增强我们对材料理解的重要性,这是释放MOF在各种应用中的全部潜力的关键一步。