Mitchell Molly E, Torrijos Gema, Cook Lauren F, Mwirigi Juliet M, He Lucy, Shiers Stephanie, Price Theodore J
Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.
Neurobiol Pain. 2024 Jul 26;16:100159. doi: 10.1016/j.ynpai.2024.100159. eCollection 2024 Jul-Dec.
Plasticity of dorsal root ganglion (DRG) nociceptors in the peripheral nervous system requires new protein synthesis. This plasticity is believed to be responsible for the physiological changes seen in DRG nociceptors in animal models of chronic pain. Experiments in human DRG (hDRG) neurons also support this hypothesis, but a direct observation of nascent protein synthesis in response to a pain promoting substance, like interleukin-6 (IL-6), has not been measured in these neurons. To fill this gap in knowledge, we used acutely prepared human DRG explants from organ donors. These explants provide a physiologically relevant microenvironment, closer to conditions, allowing for the examination of functional alterations in DRG neurons reflective of human neuropathophysiology. Using this newly developed assay, we demonstrate upregulation of the target of the MNK1/2 kinases, phosphorylated eIF4E (p-eIF4E), and nascently synthesized proteins in a substantial subset of hDRG neurons following exposure to IL-6. To pinpoint the specific molecular mechanisms driving this IL-6-driven increase in nascent proteins, we used the specific MNK1/2 inhibitor eFT508. Treatment with eFT508 resulted in the inhibition of IL-6-induced increases in p-eIF4E and nascent proteins. Additionally, using TRPV1 as a marker for nociceptors, we found that these effects occurred in a large number of human nociceptors. Our findings provide clear evidence that IL-6 drives nascent protein synthesis in human TRPV1+ nociceptors primarily via MNK1/2-eIF4E signaling. The work links animal findings to human nociception, creates a framework for additional hDRG signaling experiments, and substantiates the continued development of MNK inhibitors for pain.
外周神经系统中背根神经节(DRG)伤害感受器的可塑性需要新的蛋白质合成。这种可塑性被认为是慢性疼痛动物模型中DRG伤害感受器所观察到的生理变化的原因。在人类DRG(hDRG)神经元中的实验也支持这一假设,但尚未在这些神经元中直接观察到对促痛物质(如白细胞介素-6(IL-6))的新生蛋白质合成。为了填补这一知识空白,我们使用了从器官供体急性制备的人DRG外植体。这些外植体提供了一个生理相关的微环境,更接近生理条件,允许检查反映人类神经病理生理学的DRG神经元的功能改变。使用这种新开发的检测方法,我们证明在暴露于IL-6后,hDRG神经元的一个相当大的亚群中,MNK1/2激酶的靶点磷酸化真核翻译起始因子4E(p-eIF4E)和新生合成的蛋白质上调。为了确定驱动IL-6诱导的新生蛋白质增加的具体分子机制,我们使用了特异性MNK1/2抑制剂eFT508。用eFT508处理导致IL-6诱导的p-eIF4E和新生蛋白质增加受到抑制。此外,使用TRPV1作为伤害感受器的标志物,我们发现这些效应发生在大量人类伤害感受器中。我们的研究结果提供了明确的证据,表明IL-6主要通过MNK1/2-eIF4E信号通路驱动人类TRPV1+伤害感受器中的新生蛋白质合成。这项工作将动物研究结果与人类痛觉联系起来,为额外的hDRG信号实验创建了一个框架,并证实了MNK抑制剂在疼痛治疗方面的持续开发。