Suppr超能文献

针对有偏抽样的右删失数据的非参数检验。

Nonparametric tests for right-censored data with biased sampling.

作者信息

Ning Jing, Qin Jing, Shen Yu

机构信息

Division of Biostatistics, School of Public Health, The University of Texas, Houston, TX 77030, U.S.A.

出版信息

J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630. doi: 10.1111/j.1467-9868.2010.00742.x.

Abstract

Testing the equality of two survival distributions can be difficult in a prevalent cohort study when non random sampling of subjects is involved. Due to the biased sampling scheme, independent censoring assumption is often violated. Although the issues about biased inference caused by length-biased sampling have been widely recognized in statistical, epidemiological and economical literature, there is no satisfactory solution for efficient two-sample testing. We propose an asymptotic most efficient nonparametric test by properly adjusting for length-biased sampling. The test statistic is derived from a full likelihood function, and can be generalized from the two-sample test to a k-sample test. The asymptotic properties of the test statistic under the null hypothesis are derived using its asymptotic independent and identically distributed representation. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test statistics and compare them with the conditional test and the standard logrank test for different biased sampling schemes and right-censoring mechanisms. For length-biased data, empirical studies demonstrated that the proposed test is substantially more powerful than the existing methods. For general left-truncated data, the proposed test is robust, still maintains accurate control of type I error rate, and is also more powerful than the existing methods, if the truncation patterns and right-censoring patterns are the same between the groups. We illustrate the methods using two real data examples.

摘要

在一项现患队列研究中,当涉及到非随机抽样时,检验两个生存分布的相等性可能会很困难。由于抽样方案存在偏差,独立删失假设常常会被违反。尽管长度偏倚抽样导致的有偏推断问题在统计学、流行病学和经济学文献中已得到广泛认可,但对于有效的两样本检验尚无令人满意的解决方案。我们通过适当调整长度偏倚抽样提出了一种渐近最有效的非参数检验。检验统计量源自一个完全似然函数,并且可以从两样本检验推广到k样本检验。在原假设下,利用其渐近独立同分布表示推导检验统计量的渐近性质。我们进行了广泛的蒙特卡罗模拟,以评估所提出检验统计量的性能,并针对不同的偏倚抽样方案和右删失机制将它们与条件检验和标准对数秩检验进行比较。对于长度偏倚数据,实证研究表明所提出的检验比现有方法具有更强的检验效能。对于一般的左截断数据,如果组间截断模式和右删失模式相同,所提出的检验是稳健的,仍能准确控制第一类错误率,并且也比现有方法具有更强的检验效能。我们使用两个实际数据示例来说明这些方法。

相似文献

1
Nonparametric tests for right-censored data with biased sampling.针对有偏抽样的右删失数据的非参数检验。
J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630. doi: 10.1111/j.1467-9868.2010.00742.x.
2
Semiparametric likelihood inference for left-truncated and right-censored data.左截断和右删失数据的半参数似然推断
Biostatistics. 2015 Oct;16(4):785-98. doi: 10.1093/biostatistics/kxv012. Epub 2015 Mar 21.

引用本文的文献

3
Challenges of Integrative Disease Modeling in Alzheimer's Disease.阿尔茨海默病综合疾病建模的挑战
Front Mol Biosci. 2020 Jan 14;6:158. doi: 10.3389/fmolb.2019.00158. eCollection 2019.
9
Sample size calculations for prevalent cohort designs.现患队列设计的样本量计算。
Stat Methods Med Res. 2017 Feb;26(1):280-291. doi: 10.1177/0962280214544730. Epub 2016 Jul 11.

本文引用的文献

1
The accelerated failure time model under biased sampling.有偏抽样下的加速失效时间模型
Biometrics. 2010 Dec;66(4):1306-8; discussion 1308. doi: 10.1111/j.1541-0420.2009.01366_1.x.
4
Design and analysis of time-to-pregnancy.受孕时间的设计与分析。
Stat Methods Med Res. 2006 Apr;15(2):127-40. doi: 10.1191/0962280206sm435oa.
10
Selection bias in determining the age dependence of waiting time to pregnancy.
Am J Epidemiol. 2000 Sep 15;152(6):565-72. doi: 10.1093/aje/152.6.565.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验